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Abstract—Discriminant Analysis and other related statistical techniques are frequently used to
sort patients into those most likely and those least likely to benefit from a certain intervention.
Considerable data analysis and computation are often required to arrive at the best-fitting math-
ematical model which translates discriminating variables or indicants into probability predictions
regarding the presence or absence of disease or the likelihood of a favourable outcome. Attempts
to judge how well discriminant analysis performs or to determine why it does not perform better
are hampered by not knowing what is the greatest degree of discrimination theoretically possible
in a data set.

In this paper we describe a method of calculating the maximum discrimination attainable in a
data set and show how it can be used (1) to decide whether further model building is worthwhile,
and (2) if so, to judge the discriminatory performance of any such models. We apply this
tool to two previously published studies of radiologic utilization; the results provide reassurance
that, at least on the basis of the presenting indicants, the patients were being adequately selected
for the studies in question.

INTRODUCTION

RECENTLY there has been increased interest in developing mathematical predictions
about three classes of individuals and their medical care: (1) To which subgroups of
symptomatic individuals should one direct screening programs? (2) What subgroups of
patients with a particular diagnostic problem are more likely to have a positive diagnos-
tic test compared to other patients with the same problem? (3) What subgroups of
patients with known disease are most likely to respond to a particular therapeutic
regimen?

To develop such predictions, one usually needs to collect a large number of ‘proven’
cases i.e. individuals for whom the health state, test result or outcome is known, and to
record for each individual in this data-base the various demographic and clinical clues or
‘indicants’ that would normally be available for use in predicting this ‘result’. With this
large data-base one can use any of a number of mathematical techniques (e.g. logistic
analysis, discriminant analysis) to develop a prediction system. Ideally one then objec-
tively assesses the performance of the prediction system by testing it on a separate
independent set of individuals (the ‘validation set’).

Many investigators have attempted to develop discrimination or stratification rules
(for a general review see Feinstein Ref. 1) for a variety of clinical problems. In all cases
these rules are based on the principle that the investigator wishes to produce ‘optimal
stratification’ or to identify ‘the “best” of a group’ [1]. A recent experience of ours led us
to realize that the words ‘optimal’ and ‘best’ could be precisely defined from the data set
itself and thereby provide an upper limit to the separation powers of any discrimination
or stratification rule that might be applied to this same data-set. In brief, in a recent
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study [2] we were unable to definitively sort patients with neurological symptoms into
those most likely and those least likely to have an abnormal computed tomography (CT)
study of the head. This led us to wonder which of two situations held in this study: (1)
Could we have built a more sensitive discriminant model if we had tried harder? Or, (2)
Was there too little separation in the data to begin with?

In this paper we use this study on CT of the head to indicate that in this particular
situation there really was too little separation in the data themselves. In the process of
showing this we have developed the concept of ‘maximum attainable discrimination’
(m.a.d.), i.e. the maximum discrimination inherent in the data set itself. Quantification of
intrinsic separability can be used in two ways. First, it can be used to decide if the
inherent separability is large enough to warrant a full scale data analysis for predictive
purposes. In particular, by calculating the maximum attainable discrimination before
beginning an analysis, one can determine whether development of a sorting system is
possible or worthwhile. Second, one can see how close any empirical sorting rule
approaches the theoretical limit of separation.

METHODS

Background to this study

In a recent investigation we collected data on the presence or absence of 20 different
signs and symptoms (‘indicants’) for 2225 consecutive patients about to undergo CT of
the head [2]. Nine hundred fifty-five or 43% of these patients had an abnormal CT
examination; the remaining 579 had a normal one. We tried to use the 20 indicants to
predict the CT result in an individual patient with the hopes of reducing the total
number of patients having CT examinations without sacrificing the discovery of a large
number of patients with abnormal CT results. All of our approaches were unsuccessful,
however. Our most detailed approach is summarized in Fig. 1 (left). Using a multiple
regression analysis for binary outcomes [3] (‘logistic regression’) we found eight coef-
ficients that were significantly different from zero;in other words, the presence of each one
of these eight indicants altered the probability of an abnormal exam even after we had
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FiG. 1. Discrimination results for CT examinations of the head. The abscissa represents the
percentages of the total of 2225 patients that might be examined ranging from a small portion
(strict criteria) to almost all (lax criteria); the ordinate shows what percentage of the total of 955
diseased patients would be found by CT if examinations were limited to the percentage shown on
the abscissa. The left plot shows the results of the logistic regression analysis described in the text.
There is a close relationship between the percentage of diseased patients found and the percent-
age of total patients examined. For example, the analysis indicates that examining 60%, of the
total population of 2225 would lead to detection of about 74°, of the 955 diseased patients. The
middle plot gives the extremes of discrimination possible for this data set. With perfect infor-
mation, since 43% of all of the patients examined actually had disease, a perfect separation
technique would require examination of only 43% and this would lead to detection of 100% of
diseased patients. Examining fewer than 43% would lead to a proportional decrease in the
number of diseased patients found. This perfect discrimination is shown as the top line in the
middle figure. The worst possible discrimination would result if there were a linear relationship
between the percentage of patients examined and the percentage of diseased patients found, in
other words, if the technique for examining patients ignored all information unique to a particu-
lar patient and examined patients on a purely random or indiscriminate order. The right hand
figure plots the logistic analysis in relationship to the perfect discrimination and the worst
discrimination lines. It is closer to the latter than to the former.
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considered the presence/absence of the other seven. From these coefficients we con-
structed the estimated probability of an abnormal scan for each patient and evaluated
the impact of limiting examinations to those for whom the probabilities were high. We
did this by plotting the percentage of the 955 patients with CT-detectable disease in the
population we would have found against the corresponding percentage of the entire
population of patients we would have examined, considering that we would examine first
individuals whose probability of disease was highest in the logistic regression and then
individuals with successively lower values. Figure 1 (left) shows that although the result-
ing curve was convex upwards, reflecting the decreasing marginal gains from successively
lower-yield examinations, the curvature was not very marked, indicating that there was
only a slightly-better-than-linear relationship between the percentage of diseased patients
found and the total percentage examined. Could we do better?

Extreme levels of discrimination

For the data set under consideration, because 439 of the patients had abnormal CT’s,
the minimum number of patients we could examine to find 100%; of the diseased patients
would obviously be 43% of the total—that is, examine only those who, as if one had
precognition of the final health state, were diseased. In a similar way, examining fewer
(say 1/2 of the 43%, or 21.5%) of the total would lead to detection of exactly the same
reduced fraction (in this example, 1/2 of 100 or 50%) of the diseased patients. This is
graphically displayed in Fig. 1 (center), and this curve, with an initial slope of 100:43 or
2.33:1 defines a state called perfect discrimination. Clearly, while this is what we would
like to be able to do, it is in reality unattainable.

At the other extreme, worst possible discrimination occurs if we ignore all information
unique to a particular patient and examine patients on a purely random or indiscrimi-
nate order. With this system, there is a direct 1:1 linear relationship between the percent-
age of abnormals detected and the percentage of the population examined; this line, with
a slope of 1, is displayed as Fig. 1 (center).

The discrimination results for the CT data fall between the curves representing perfect
discrimination and worst possible discrimination (Fig. 1, right). The question then becomes
“How much closer to perfect discrimination could we get?” Or, said differently, how
much inherent separation exists in the data set itself? What is the maximum attainable
discrimination we could hope for?

RESULTS

M aximum attainable discrimination

Two populations (for example, normal and diseased) under consideration can be de-
scribed according to a number of different attributes, criteria, or indices which are limited
in their ability to distinguish between the two populations by inherent characteristics of
the populations themselves. The greater the amount of relevant information considered
the greater the chance of achieving separation between two groups. These basic prin-
ciples lead to the identification of the maximum discrimination possible between two
groups attainable by considering successively greater amounts of the information avail-
able on them.

In order to illustrate this principle consider the data base on CT of the head and
assume that for illustrative purposes we wished to consider only 3 of the 20 indicants we
assessed, i.e. headache, seizure and motor weakness. How much inherent separation is
there in the group of patients with normal CT’s compared to abnormal CT’s in the data
set when only these 3 variables are considered? What does a curve of percentage of
patients with disease detected against percentage of patients examined look like? Where
does it fit in the space defined by perfect and worst discrimination (Fig. 1 center)?

In order to derive the maximum attainable discrimination assume, as in Fig. 1, that we
try to rank patients in order of decreasing probabilities of having an abnormal CT result.
We will define our ranking as optimal if it guarantees that we would identify the greatest
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TABLE 1. YIELD OF ABNORMAL SCANS IN THE 2° = 8 SUBGROUPS GENERATED BY THE SYMPTOMS HEADACHE, SEIZURE
AND MOTOR WEAKNESS

Symptom Symptom Complex

Headache — — — + + + +

Seizure B - + + - - + +

Motor weakness + — + - + - +
1. Number in subgroup 884 495 203 86 331 139 55 32
2. Number abnormal 373 260 67 47 103 71 19 15
3. Percentage abnormal 42 53 33 55 31 51 35 47
4. Optimum/ranking

(highest is [8], lowest is [1]) [4] [71 [2] [8] [ [61 [3] [5]
5. Percentage of patients with this or

higher ranking 74 26 85 4 100 32 76 34
6. Percentage of total abnormals

in those with this

or higher ranking 80 32 89 5 100 40 82 41

percentage of abnormals for any given number of examinations performed that is, that it
is close to the ‘perfect’ curve in Fig. 1.* Consider the above case of three symptoms
(k = 3).

Using headache, seizure and motor weaknesses, there will be 2* = 8 subgroups; Table 1
indicates the number of patients from the original 2225 who fell into each of the 8
subgroups (line 1), along with the numbers (line 2) and percentages (line 3) who were
abnormal in each subgroup. Clearly the optimum ranking of these subgroups is accord-
ing to the percentages in line 3: the subgroup with the highest percentage of abnormals
(55%) receives the highest priority and the subgroup with only 319, abnormal the lowest
(line 4). In order to display the performance of such a ranking of these 2225 patients, we
determine the cumulative percentages of the 2225 who would be examined by success-
ively relaxing the criteria for examination (line 5) and the cumulative yields (line 6), and
plot them in a ‘% detected vs % examined’ curve in Fig. 2.

*We could also argue for a different underlying principle for definition of ‘optimum’, and the analysis could be
adapted to reflect this change. For example, we could argue that the ranking should lead us first to examine
the most uncertain group, that is, those with a probability close to 50%; of having an abnormal CT and then to
examine those with probabilities closer to 0 and 1. In fact, Pauker has developed methods for determining the
upper and lower boundaries for this ‘most in need of testing’ group with the greatest uncertainty [4]. The
concept of maximum attainable discrimination can be used with any set of priorities, provided that they are
well defined and agreed upon.
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Fi1G. 2. Limits of detectability for CT studies of the head using 3, 4, or all 20 of the original
indicants collected on each patient. The ordinate represents the percentage of diseased patients
found and the abscissa the percentage of the patients examined. The light diagonal line corre-
sponds to worst possible discrimination, similar to that seen in Fig. 1. The other three lines
correspond to the theoretical limit of detectability using only three specific pieces of data on each
patient, only four specific pieces of data on each patient, or all 20 pieces of data on each patient.
The more information used, the greater the detectability. Because only 20 pieces of data were
collected on each patient, the curve created using these data (as shown in Tables 1 and 2), is
labeled the maximum attainable discrimination curve.
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If the number of indicants used (k) is increased to 4 by adding, for exampie, the
symptom dementia, the best ranking of the 2* = 16 subgroups so generated produces a
performance curve which can only ‘better’ than that with k = 3. The reasoning is as
follows: adding one additional symptom has the effect of splitting each of the 8 sub-
groups into two smaller groups—one with patients who present with this fourth symp-
tom and one with those who do not. Results are shown in Table 2. For example, the
second highest ranked group with 495 patients has a yield of 53%,. Subdividing it into
those presenting with and without dementia produces subgroups with yields of 62 and
499, respectively. Similarly those in the low-yield group of 331 patients can be reranked,
using this fourth symptom, into a group of 51 with a 399 yield and a remaining group of
280 which now has a yield of only 30%. This procedure can be applied to each of the
eight original groups, and the 16 resulting subgroups can now be reranked as is shown in
line 4 of Table 2. Rows 5 and 6 (of Table 2) can again be used to plot the performance of
a ranking system based on these four symptoms.

It is now easy to see where this reasoning leads: if we use all 20 symptoms and
findings, we can divide the 2225 patients into unique sets where all patients within a set
have exactly the same symptoms and are thus indistinguishable from one another but are
different (in at least one symptom) from patients in any other set. The subsets so formed
(in our example, the 2225 patients divided into 646 different subsets) are the finest
possible partition; one cannot distinguish them further without using a 21st indicant, their
names, hospital identification number, etc. Thus, the performance curve generated by the
optimum ranking of these 646 sets is ‘better’ than that produced by any other ranking
system which uses some or all of the 20 presenting symptoms. So, by ranking on the
observed proportion of positive scans associated with each of the symptom patterns, we
established an upper bound on the ‘separability’ of this data set which any discriminant
analysis of the data might achieve.

This maximum attainable discrimination associated with a ranking rule that used all
20 indicants for this group of 2225 patients is shown as the upper curve in Fig. 2. This
analysis showed that examining 70% of these patients, for example, would at the very best
detect only 929 of the disease. Moreover, when we examined those ‘missed’, we found
they included a number of important conditions such as brain tumors. Thus, these 20
indicants provide no clearcut separability of those with normal studies from those with
abnormal CT studies, especially none that would warrant further extensive data analysis
or sizeable reductions in the number of patients scanned: Figure 3 plots the logistic
results presented earlier in Fig. 1 with the maximum attainable discrimination results
obtained for 20 indicants. The former is everywhere below the latter but only slightly so,
suggesting that our logistic analysis leads to predictions only slightly below those maxi-
mally attainable by or inherent to the data themselves. This raises the question of
significant differences.

Significance results

Two questions of significance may be raised. (1) What is the difference between the two
curves in Fig. 3? and, (2) are the 20 indicants really helping us in our discrimination task?

The usual tests of statistical significance do not apply to the data in question (1). The
real issue is “Is it worth trying other additional logistic expressions (i.e. by adding on
many more combination terms) or other separation techniques to get closer to the m.a.d.
curve?” The answer here depends on the investigator’s goals. The theoretical data would
suggest that if the very best we can do to find 929, of the diseased patients is to examine
70%, of the original population we might as well conclude that there really is not enough
separation in the data we are collecting to differentiate normals from abnormals. Either
we must recognize that appropriate referral criteria exist or that we have to add ad-
ditional data (e.g. 21st, 22nd,...indicants) to the data base and thereby attempt to
improve the inherent and hopefully practically attainable discrimination.

Regarding question (2)—what is the chance variation around the m.a.d. curve? In
considering the m.a.d. curve it is necessary to calculate the expected chance variation
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FiG. 3. Comparison of logistic results with maximum attainable discrimination results. The ordi-

nate represents the percentage of diseased patients found and the abscissa the percentage of total

patients examined. The maximum attainable curve using 20 indicants is everywhere above logistic

analysis. However, the difference between these is relatively small; above 109 more diseased

patients are found for a given percentage of total patients examined using maximum rather than

the actual separability. This indicates that very little could be gained by further attempts using
different separation algorithms.

around an ‘expected’ curve. In other words, it is necessary to calculate an interva] within
which for any given percentage of the population scanned the maximum percentage of
disease detected would be most often expected to fall, if, regardless of symptoms, the
probability of an abnormal result were the same for each patient instead of different for
each patient. If the maximum attainable discrimination curve calculated from the CT
data set lay below the upper limit of this calculated interval, then we would have to
conclude that the maximum separation observed may not have resulted from infor-
mation in the various symptoms but rather from capitalizing on chance fluctuations.

In order to calculate the expected variation, we used a computer simulation and for
this purpose repeatedly assigned the abnormal examinations (43%, of the total) over the
various patient subsets in a random manner. We then constructed the maximum attain-
able discrimination curve produced by each such random assignment and formed the
frequency distribution of the attainable maximum. We did this at only one point on the
m.a.d. curve in Fig. 3: the point indicating that 70% of the original patient population
would be examined.*

The results of this computer simulation are shown in Fig. 4. Note from this graph that
the average maximum attainable discrimination achieved with this simulation was ap-
proximately 90%; in fact, only 2 in 1000 simulations produced m.a.d.’s of 92% or more,
thus suggesting that the 929 observed in the data-set is statistically significant at the
p = 0.002 level. However, this 2% differential is a negligible one. In other words, when
the maximum discrimination was obtained by a ranking which actually used the infor-
mation given by the presence or absence of the 20 symptoms, it was only greater by 2
percentage points than the average of 90% obtained from a random assignment in which
each patient was given a 439 probability of having an abnormal result.

Barium enema study. Another example of maximum attainable discrimination

In another investigation [5] we recorded the presence or absence of 34 different
symptoms in 802 patients on whom barium enema examinations were requested. One
hundred fifty-five of these patients or 199 were subsequently shown to have an abnormal
barium enema examination. Our preliminary analyses at that time failed to indicate any
means of eliminating a significant fraction of patients from this examination without also
failing to diagnose an equally sizeable group of patients with disease. In particular, by
examining all patients who had at least one sign or symptom which was present signifi-
*For illustrative purposes in this paper, we have assumed that with a high unit cost technological examination,

like computed tomography, it might be useful to reduce the number of patients scanned to 70% of the original
popuiation.
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F1G. 4. Histogram showing range of variation in the maximum percentage of disease detected by
examining 70% of the original patient population. On the ordinate is the frequency and on the
abscissa the corresponding maximum attainable percentage detected. Simulated results obtained
by randomly distributing the abnormals over all of the possible patient subgroups show that the
average maximum attainable discrimination was approximately 90%. Only 0.2% of the simula-
tions produce maximum attainable discriminations of greater than the 92% obtained on the
actual data set. These results suggest that this observed 92% figure is statistically significant at the
p = 0.002 level.

cantly more often among those with abnormal barium enemas compared to those with
normal barium enemas, we were able to decrease the total number of examinations found
by 369, but at the same time we decreased the total number of diseased patients found
by 23%.

In order to identify the maximum attainable discrimination of this data set using the
techniques described above, we first restricted our analysis to the 19 symptoms which
occurred with a frequency of 3%, higher. This led to an average number of 1.76 patients
per subgroup, and 65 of the 402 subgroups so formed had only a single patient in them.
Under these conditions and using the techniques for developing the maximum attainable
discrimination curve described above, the curve in Fig. 5, results. This curve appears high
in the upper left hand part of the graph, indicating that a high percentage of abnormals
could be detected by examining only a small percentage of the patients, contrary to what
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FiG. 5. Comparison of empirical results and maximum attainable discrimination results for
barium enema examinations. The ordinate represents the percentage of diseased patients found,
and the abscissa the percentage examined. Perfect discrimination for this data set and worst
discrimination are indicated. The curved lines represent the maximum attainable using
varying grouping patterns described in the text. The lower of these, corresponding to the more
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the experimental results suggested. This discrepancy arises because of the relatively low
percentage of diseased patients in this group (19%) and because the instability caused by
small denominators (an average of 1.76 patients per subgroup) produces an unrealisti-
cally high separation. Rather than eliminate certain symptoms to create fewer, larger
subgroups, we enlarged each subgroup by a ‘nearest neighbors’ technique [6]. This
technique ranks a subgroup with a given symptom complex by the proportion of abnor-
mals among those with this exact set of symptoms plus those with these and any other
symptoms; even though this approach produces over-lapping groups of patients, the
resulting data set is more likely to give realistic and stable estimates of separability that
might be expected if a still larger data base had been obtained. With this approach, each
subgroup now contained an average of 23 patients, and the maximum attainable dis-
crimination curve dropped as shown in Fig. 5. The two triangular points in Fig. 5
represent selection criteria developed at the time of the original study and indicate that
while they are somewhat below the maximum attainable discrimination curve, the differ-
ence is not enormous. This suggests that, in fact, the original study had separated the
patient population almost as well as theoretically possible.

DISCUSSION

Over the past few years there have been a number of studies focusing on a develop-
ment of algorithms for more efficient screening, better utilization of diagnostic and
ancillary services, and greater selectivity in the use of various therapeutic options.
Examples include strategies for screening patients at special risk of hypothyroidism [6]
or identifying carriers for Tay Sachs Disease [7], optimizing use of radiographic examin-
ations [2, 5, 8], admitting patients to the coronary care unit [9], or the intensive care unit
[10], avoiding surgical exploration of patients with cancer [11], or using medical or
surgical treatment for gallstones [12].

The evaluation of such studies must consider whether the resultant algorithms were
merely developed and immediately recommended for use or whether they were developed
and then validated on a separate data set before their generalizability was suggested. After
all, it is relatively easy to use a computer program which evaluates each of the indicants
to choose one which is “best”, then searches the remainder for the next-best one to add
to the best, and so on in a stepwise manner, in essence creating finer and finer partitions
of the subjects;* these if taken to their extreme would result in what we call the maxi-
mum attainable discrimination.

However it is not enough to then re-apply the algorithm which develops from this
search to the very data from which it was constructed and claim that its performance
there is a good measure of its performance in future patients; the claim will generally be
overoptimistic. Various methods [15, 16] exist which use the original data set to obtain a
more realistic estimate of the algorithm’s likely future performance; however, they are at
best a method of deciding whether the ‘apparent’ present results are so worthwhile that,
even after adjustment for overoptimism, a prospective or independent validation study is
worth undertaking and likely to confirm the original enthusiasm.

If an algorithm can be verified and can show that greater efficiency and selectivity of
medical resources is possible, the investigator can stop. If, on the other hand a good
algorithm cannot even be developed, then the investigator worries about the adequacy of
his/her efforts. He must wonder whether he merely did not try hard enough to find the
right separation technique or alternatively whether he was fighting an impossible battle
where there really was not enough separation theoretically possible to start with. The
objective of this paper was to provide a method which differentiates between these
possibilities.

*A stepwise discriminant analysis [12] is the most common mathematical technique used to do this; however,
the more recently available ‘recursive partitioning’ or ‘automatic interaction detection (AID)’ method [13, 14]
is receving considerable attention. The latter’s appeal is in its more detailed choice of successive indicants. For
example, if indicant 7 is the single best discriminator, then indicant 4 may be chosen as ‘second best’” when
indicant 7 is present, and indicani 3 if indicant 7 is absent. It can produce a quite irregular decision tree,
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The methods we have described, allow us to do two things (1) to establish what the
ultimate separation in a particular data set is; and (2) if the theoretically achievable
separation is substantial, to judge the performance of any proposed discriminant model.
If the separation is not large enough to be considered real, the analyst can be reassured
of this and is spared considerable effort and time; if it is real, then he has a target against
which he can measure the performance of the discriminant models he proposes.

In the examples we have presented, the maximum attainable discrimination curves
provide reasonable reassurance that the patients were being adequately selected for the
barium enema and CT examinations. It is obviously possible that the apparent lack of
separability might have been produced by inaccuracies or misunderstandings in the
recording of the data. Since all data were carefully rechecked by research assistants,
however, this seems unlikely. It would be instructive to apply these methods to the data
of Bell and Loop [8] to see if the remarkable discrimination they achieved was indeed
real and not attributable to capitalizing on chance. If the latter were true, it might explain
the contradictory results which DeSmets et al. [17] found when they applied the rules
developed by Bell and Loop to a new population.

This paper does not address two issues. First, is the percentage of patients with
detectable disease the desirable endpoint or label for the y-axis in Figs 1-3? Instead
should the percentage of patients with treatable disease or the percentage of patients with
potentially curable disease be used instead? Use of these might lead to greater inherent
separation in the data set but would imply a particular value judgement about the role of
diagnostic tests. Second, whatever the endpoint selected, we do not address the issues
related to the choice of an ideal percentage of total examinations performed. The choice
will depend upon the clinical setting, in particular the costs of missing a patient with
disease as weighed against the costs of falsely classifying a normal patient as diseased.

In the Appendix, we show the computational steps required to generate the perform-
ance curve corresponding to the maximum attainable discrimination, and to calculate the
various curves one would expect if the symptoms were completely uninformative. Com-
putational costs for steps 2 and 3 are quite low; the evaluation of the expected variation
will be more costly, and will depend on how efficiently each repetition can be generated
and how many repetitions are used. However the entire cost is still only a small fraction
of what multiple attempts at refining a mathematical algorithm would cost. A listing of
the program is available upon request.

Acknowledgements—We are indebted to Susan Farwell, Joanne Polak and Susan Krock for data collection, to
Colin Begg, Michael Feldstein and Kenneth Stanley for helpful suggestions, and to Gail Manyan and Irene
McCammon for typing the manuscript. Part of this work was carried out while one of the authors (J.H.) was
still at the Division of Epidemiology and Biostatistics, Sidney Farber Cancer Institute, Boston.

REFERENCES

1. Feinstein AR: Synchronous partition and bivariate evaluation in predictive stratification. Clin Pharmac
Ther 13: 755-768, 1972

2. McNeil BJ, Hanley JA, Funkenstein HH, Rumbaugh C: No evidence for inappropriate utilisation of CT
of the head in a tertiary care hospital. Radiology 139: 113-118, April 1981

3. Cox DR: Analysis of Binary Data. London: Methuen, 1970

4. Pauker SG, Kassirer JP: The threshold approach to clinical decision making. N Eng J Med 302:
1109-1117, 1980

5. Gerson DE, Lewicki AM, McNeil BJ, Abrams HL, Korngold E: The barium enema: evidence for proper
utilization. Radiology 130: 297-301, 1979

6. Gardner MJ, Barker DJP: A case study in techniques of allocation. Biometrics 31: 931-942, 1975

7. Gold RIM, Maag UR, Neal JL, Scriver CR: The use of biochemical data in screening for mutant alleles
and in genetic counseling. Ann Hum Genet 37: 315-326, 1974

8. Bell RS, Loop JW: The utility and futility of radiographic skull examination for trauma. N Eng J Med
284: 236-239, 1971

9. Pozen MW, D’Agostino RB, Mitchell JB, Rosenfeld DM, Guglielmo JT, Schwartz ML, Teebagy N et al.:
The usefulness of a predictive instrument to reduce inappropriate admissions to the coronary care unit,
Ann Int Med 92: 238-242, 1980

10. Mulley AG, Thibault GE, Hughes RA, Barnett GO, Reder VA, Sherman EL: The course of patients with
suspected myocardial infarction: the identification of low risk patients for early transfer from intensive

N R TR . on
care. N Eng J Med 302: 943-948, 1980



Maximum Attainable Discrimination 611

11. Brown WB: Prediction analyses for binary data. In Biostatistics Casebook, Miller RG et al. (Eds). New
York: John Wiley 1980

12. Dolgin SM, Schwartz JS, Kressel HY, Soloway RD, Miller WT, Trotman B, Soloway AS, Good LI:
Identification of patients with cholesterol or pigment gallstones by discriminant analyses of radiologic
features. N Eng J Med 304: 808-811, 1981

13. Diehr P, Wood RW, Barr V, Wolcott B, Slay L, Tompkins RK: Ocult headache: presenting symptoms
and diagnostic rules to identify patients with tension and migraine headache. J Chron Dis 34: 147-158,
1981

14, Hooton TM, Haley RW, Culver DH, White JW, Morgan WM, Carroll RJ: Joint associations of multiple
risk factors with the occurrence of nosocomial infection. Am J Med 70: 960-970, 1981

15. Lachenbruch P, Mickey R: Estimation of error rates in discriminant analysis. Technometrics 10: 1-11,
1968

16. Efron B: Bootstrap methods: another look at the jackknife. Ann Stat 7: 1-26, 1979

17. DeSmet AA, Fryback DG, Thornbury Jr: A second look at the utility of radiographic skull examination
for trauma. Am J Roentgenol 132: 95-99, 1979

APPENDIX
1. Notation
N: number of patients in data set
k: number of symptoms used to form symptom complexes
x: a k-variate vector indicating the presence/absence of symptoms in a typical patient ]
y: a scalar quantity indicating the result of CT examination in a typical patient (y = 0 to signify
“normal”, y = 1 to signify “abnormal”)
[x, y]: a k + 1 variate vector formed by concatenating x and y
K: number of separate complexes or patient subgroups (! < K < 2%

ny, Ha,...,ng:  the numbers of patients in each of the K subgroups

X a k-variate vector indicating the presence/absence of symptoms in a patient in subgroup i,
i=12..,K
Yis ¥2,---,yk:  the numbers of patients with abnormal CT examinations in each of these subgroups
K
Y: total number of patients with abnormal CT examinations; Y = }

i=1

2. Obtaining the n, and y; and forming optimum ranking

(i) Sort the file of N [x, y]'s using the k different symptoms as keys.

(ii) Read the sorted [x, yI’s, counting the multiplicity n; of each unique x pattern and the number of
abnormals y; seen among the n,. Form the ratio r; = y;/n; for each subgroup. Write the {n, y; r;} vectors to
another file or store in an in-core 3 x K array.

(iii) Sort the K {n, y,, r;} vectors into descending order on the r; key, to form an optimum ranking of the K
subgroups.

3. Plotting the performance curve

1 1
2 ) Z Yy
Plot = x 100 vs 2% x 100
N Y

for I =1,2,...,K; where {[1],{2],...,[K]} denotes a ranking of the K subgroups. The plot using the optimal
ranking yields the maximum attainable discrimination (m.a.d.) curve.

4. Expected variation in the m.ad. curve for a given proportion pg of examinations
Set N, = Npg. For each repetition of the experiment, (i} generate y,, ..., y¢ by distributing Y successes at
random among the

K
N=3%n
i=1

patients. (i} use the ratios r; = y;/n; and step 2(iii) to form an optimum ranking of the K subgroups. (iii) Find
the largest I such that

1
2 My < No.
i=1

(iv) Calculate
I

Yo = Z Yay-
i=1
Calculate the maximum attainable percentage of disease detected:
Yo
Pp = 7 x 100

and increment the appropriate class frequency of the distribution of pp by 1.





