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Curves

Receiver operating characteristic (ROC) analysis was
developed to summarize data from signal detection
experiments in psychophysics [21]. Today, the term
refers to

a method of quantifying how accurately exper-
imental subjects, professional diagnosticians and
prognosticators (and their various tools: tests or
instruments yielding numerical results, combinations
of data-collection and data-display devices, different
amounts and types of information . . .) perform when
they are required to make a series of fine discrimina-
tions or to say which of two conditions or states of
nature, confusable at the moment of decision, exists
or will exist [50].

In biomedical applications, the two states are often
referred to as diseased and nondiseased, or D+ and
D− for short. Central to this analysis is the ROC
curve, which displays diagnostic accuracy as a series
of pairs of performance measures. Each pair consists
of a true positive fraction (TPF) and the correspond-
ing false positive fraction (FPF) for a given definition
of “test” (t) positivity, t+. These fractions are cal-
culated from the D+ and D− groups respectively,
TPF as the proportion of (t+, D+) among those
D+, and FPF as the proportion of (t+, D−) among
those D−. In the medical literature, the term TPF is
called sensitivity and the complement of the FPF is
called specificity. For the performance of statistical
tests, the term power, rather than sensitivity, tends to
be used. Equivalently, one can use its complement,
the false negative fraction (FNF, the complement
of TPF) or the frequency (β) of a so-called type II
error. There is no direct statistical term for specificity.
Instead, statisticians again focus on the complement,
using the false positive fraction (FPF, the comple-
ment of the true negative fraction, TNF) to denote
the frequency (α) of what they call type I error.

Diagnostic performance is sometimes naively
characterized using a single overall index of
“accuracy”, calculated as the sum of two proportions,
i.e. the proportion of (t+, D+) instances plus
the proportion of (t−, D−) instances, where the
proportions are based on all patients undergoing the
test. This index is a weighted average of sensitivity

and specificity, using as weights the (particularistic)
relative frequencies of the D+ and D− states. Using
two measures, namely a (TPF, FPF) pair, avoids this
arbitrariness.

Although a (TPF, FPF) pair is a big improvement
over an overall accuracy index, it is often not
sufficient. A single (TPF, FPF) pair still does not
allow meaningful comparison of the performance
of one diagnostic test with another, or even with
the same test performed in another setting or by
another observer, when different criteria for test
positivity are used in the two instances compared.
The ROC curve, in the form of a series of (TPF,
FPF) pairs (see Figure 1), isolates a test’s capacity to
discriminate between a given disease and its absence,
from the confounding influence of the decision
criterion (confidence level or cutting score) that is
adopted for test positivity [37, 52, 58]. A more
accurate test will be located on an ROC curve closer
to the top left corner than a less accurate one. A
noninformative test will have an ROC curve that lies
along the diagonal.

Statistical techniques to handle the full range of
ROC study designs continue to be developed [3,
5, 9, 26]. Analyses can vary in complexity from
deriving an ROC curve for a single diagnostic test
involving numerical values derived from patients
at a single institution, to complex multi-institution
studies to compare two or more imaging modalities.
The complexity also depends on the purpose of the
discrimination test, the setting and context to which
it refers, whether in the study interpretations are
performed individually in real time [18] or later
in “batch” mode [52], and whether the tests under
study and the procedures for independent definitive
determination of the true state of nature (the gold
standard) are costly, invasive, uncomfortable or
dangerous.

This latter issue can create special problems since
ROC curves are strongly influenced by the source of
the test material used [6]. Distortions occur when the
result of the test being studied affects the subsequent
work-up needed to establish a definitive diagnosis.
Information available on the distribution of test
results and clinical indicants in the source population
can be used to remove quantitatively this “verification
bias” from ROC curves [20, 30]. Other biases in
the assessment of diagnostic tests and guidelines for
circumventing the problems in prospective studies
have been described [4, 7].
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Figure 1 Example of empirical ROC points and smooth
curve fitted to them. The empirical points are calculated
from successively more liberal definitions of test positivity
applied to the 2 × 5 table (inset) of disease status (D+
or D−) and rating category (−− to ++). The smooth
ROC curve is derived from the fitted binormal model (inset,
lower right, with parameters a = 1.657 and b = 0.713 on
a continuous latent scale) by using all possible scale values
for test positivity. The fitted parameters a and b, together
with the four estimated cutpoints, produce fitted frequencies
of {32.9, 6.4, 5.9, 10.7, 2.1} and {3.2, 1.5, 2.1, 11.2, 32.9}
for the D− and D+ rows of the 2 × 5 table. Note that
a monotonic transformation of the latent axis may produce
overlapping distributions with nonbinormal shapes, but will
yield the same multinomial distributions and the same fitted
ROC curve

The complexity of the test material can have an
important bearing on the ability of a study to compare
tests. Cases resulting in an ROC curve that is midway
between the diagonal (subtle or completely obscure
ones) and the upper left corner (all ‘obvious’) allow
for sizable differences in performance; however, the
closer the curve is to the upper left corner, the
narrower is the sampling distribution of the various
indices derived from the curve [39].

For clinical imaging studies involving inter-
pretations, the most economical method of col-
lecting a reader’s impression of each case is
through the use of a rating scale, i.e. graded lev-
els of confidence that the case is D+. A discrete
five-point scale – 1 = “definitely not diseased”, 2 =
“probably not diseased”, 3=“possibly diseased”, 4=
“probably diseased”, 5 = “definitely diseased” – is

commonly used. Getting a reader to use all of the
rating categories provided yields a more stable ROC
curve estimate, but is not always easy to accomplish
without causing other problems [23]. Use of ratings
from the continuous 0–100% confidence scale [31,
49] has several advantages: it more closely resem-
bles reader’s clinical thinking and reporting; its use
of a finer scale leads to somewhat smaller stan-
dard errors of estimated indices of accuracy; and
it increases the possibility that the data will allow
parametric curve fitting.

Obtaining an ROC Curve and Summary
Indices Derived from it

For rating scale data, the 2 (D states) × k (rating
categories) frequency table of the ratings yields k − 1
empirical (TPF, FPF) ROC points. As shown in
Figure 1, these are obtained from the k − 1 possible
two-by-two tables formed by different re-expressions
of the 2 × k data table. After TPF = 0 at FPF = 0,
the lowest leftmost ROC point is derived using the
strictest cutpoint, where only the most positive cate-
gory would be regarded as positive; each subsequent
point towards the top right ROC corner (TPF =
1, FPF = 1) is obtained by employing successively
laxer criteria for test positivity. For objective tests
that yield numerical data, the same procedure – with
each distinct observed numerical test value as a cate-
gory boundary and with k no longer fixed a priori but
rather determined by the numbers of ‘runs’ of D+ and
D− in the aggregated data – is used to calculate the
series of empirical ROC data points. The sequence of
points can then be joined to form the empirical ROC
curve or a smooth curve can be fitted.

As a summary measure of accuracy, one can
use: (i) TPF[FPF], the TPF corresponding to a single
selected FPF; (ii) the area under the ROC curve; or
(iii) the area under a selected portion of the curve,
often called the partial area. Summary (i) is readily
understood and most clinically pertinent. However,
reported TPFs are often in reference to different FPF
values, and it may be unclear whether a reference
FPF was chosen in advance or after inspection of the
curve. Moreover, the statistical reliability tends to be
lower than that of other summary indices.

Summary (ii) has been recommended as an alter-
native [52]. It has an interpretation in signal detection
theory as the proportion of correct choices in a two-
alternative forced choice experiment [21], i.e. an
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experiment where in each trial the subject is presented
with a pair of stimuli, one from a randomly cho-
sen D+ and one from a randomly chosen D−, and
is asked to decide which derives from which. This
method of reporting judgments is common in psy-
chophysics and has statistical advantages when using
synthetic images, where observer time is the limiting
factor [8].

To some, the area index has a serious limitation.
Since a large part of the area comes from the
rightmost part of the curve, it includes FPFs of no
clinical relevance, and so can be insensitive when
used to compare the performance of two tests. One
curve may have higher TPFs than another in the
region of relevant FPFs, but they could conceivably
cross. Since the area under the entire curve averages
the sensitivity over the full (0, 1) range of FPFs, any
superiority in the relevant FPF region may be lost,
or even reversed, when the curves are ranked on the
basis of the entire area. The average sensitivity (TPF)
over a range of relevant FPFs, summary index (iii)
[34, 53, 60], is a compromise between (i) and (ii).

All three indices can be calculated either from the
empirical or a (parametrically fitted) smooth curve.
The statistical precision of nonparametric estimates
can be calculated using a general method applicable
to all three indices [60]; in the case of (ii) other
essentially equivalent but less cumbersome methods,
based on U-statistics, are also available [11, 28].
The case of (i) is more subtle than most realize: the
standard error of an estimated TPF must include, in
addition to its own obvious binomial variation, the
uncertainty associated with determining the position
of the FPF point [32].

A smooth ROC curve can be fitted to rating scale
data by fitting two overlapping distributions on a
continuous but “latent” scale underlying the results
for D− and D+ cases [12, 36] In the most commonly
used, “binormal”, model, the two distributions are
taken to be, without loss of generality, N(0, 1) for
D−, and N(µ, σ ) for D+. The distributions of the
ratings are thus multinomial, with expectations that
are functions of the k − 1 cutpoints and the two
parameters µ and σ , allowing the k + 1 (two relevant
and k − 1 nuisance) parameters to be fitted to the
observed data table (2k − 2 degrees of freedom
in total, leaving k − 3 degrees of freedom to test
the fit) using the criterion of maximum likelihood.
Small additions to empty cells can be used to
avoid “degenerate” situations [13]. The extent to

which the normal deviate (see Normal Scores)
transformations (z[TPF], z[FPF]) of the empirical
(TPF, FPF) pairs are linear provides a visual test
of the fit, since under the binormal model their
expectations satisfy

z(TPF) = (1/σ)z(FPF) − µ/σ = bz(FPF) − a.

When b = 1, the curve in (TPF, FPF) space is
symmetric about the negative diagonal, while b < 1
produces a curve which rises more steeply at first and
“flattens out” at the end.

Since the various summary indices derived from
the fitted curve are functions of the estimates
of a and b, their statistical precision – used in
tests (see Hypothesis Testing) and confidence
intervals – can be calculated from the corresponding
variance/covariances provided by the maximum
likelihood procedure. Confidence intervals can also
be calculated for the entire curve [33].

For rating scale data, the popularity of the binor-
mal model over bilogistic [22, 47] or other com-
petitors [16] is more historical than theoretical. Use
of a binormal model for rating data does not imply
that if one could observe the latent distributions, they
would have this exact form [38]. Rather, the work-
ing assumption is that the two overlapping multino-
mial distributions can be mathematically predicted
from the discretization of two normal distributions
on some unspecified latent scale. Whereas any two
overlapping distributions will uniquely determine a
specific ROC curve, the reverse is not true: the
“binormal” assumption concerns only the functional
form of the ROC curve, which can always be exam-
ined empirically, and not the form of the underlying
distributions themselves, which cannot be determined
in many applications of ROC analysis [38]. Use of a
small number of rating categories, with few degrees
of freedom, to distinguish the fit of one specific form
over another, leaves considerable freedom to fit dif-
ferent distributional forms. This freedom is not a
function of sample sizes (numbers of cases) but of
the number of rating categories [25].

More important than the choice of distributional
family seems to be the need to allow for unequal
variances (b �= 1). Empirically, b tends to be less
than 1 [51], possibly because of the presence of
unidentified subtypes in the D+ sample. Thus,
whereas one-parameter models, with b = 1, would
have practical advantages, particularly for meta-
analyses and for fitting an entire (but symmetric)
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ROC curve to a single empirical (TPF, FPF) data
point, they are not supported by empirical findings.

Care must be taken in the fitting of parametric
curves to results recorded on a numerical scale:
directly fitting N(µ1, σ1) for D− and N(µ2, σ2) for
D+ can yield severe distortions when the data do
not arise from normal distributions [19]. The method
in which the raw data are first categorized and the
categorized data analyzed as if they were rating data
[41] – with the assumptions of overlapping normal
distributions on an unspecified transform of the
actual measurement scale – is a much more robust
approach.

Comparison of ROC Curves

Because of the need to account for large differences in
case difficulty, compared curves are usually based on
the same set of cases, and one must therefore take the
correlation of the estimated curves – and summaries
derived from them – into account when calculating
the standard error of differences.

Parametric methods for comparing two curves are
based on the estimates of the binormal (or bilogistic,
or other model) parameters (a, b) associated with
each curve, and their variances and covariances [34,
42]. The equality of two curves can be assessed by
testing the equality of the two vectors (a1, b1) and
(a2, b2). Comparisons involving a summary index are
made by computing, for each curve, the appropriate
function of the parameter estimates, then using the
delta method to calculate the standard error of the
difference in indices.

A nonparametric method is now available to
compare two curves based on continuous data from
the same set of cases [59]. A criterion for positivity
that is common for the two tests is induced using the
ranks in the combined D+ and D− data for each test.
Using this calibration, one first computes the differ-
ence in the numbers of errors made by the two tests
at each possible level of test positivity and then cal-
culates the average of the absolute differences over
the different levels. The test statistic is referred to the
permutation distribution obtained by randomly inter-
changing pairs of ranks. Nonparametric comparisons
of the areas under two curves are based on correlated
U-statistics [11] or equivalently on the jackknife
method [27], while partial areas, and – ultimately –
sensitivity at a single specificity value can be com-
pared with a more general method [60].

Guidelines for sample size determination and
power calculations are available for both parametric
[software program ROCPWR from Charles Metz
at the University of Chicago, or the article by
Obuchowski & McClish [43]] and nonparametric
approaches [29].

Comparison of Accuracy of Imaging
Procedures

The methods just described deal only with sim-
ple comparisons of two tests that yield objective
numerical results, and are not sufficient for imaging
studies (see Image Analysis and Tomography)
which produce interpretations of each case by mul-
tiple readers. For example, the performance with
conventional versus laser printed films might be stud-
ied by having several readers interpret each image; a
comparison of computed tomography, magnetic reso-
nance and ultrasound images might involve different
readers for each modality [46]. Several refinements
and some alternatives to the method initially pro-
posed for dealing with these more complex com-
parisons have been suggested. The challenge is to
include and estimate properly each of the several rel-
evant components of variance and covariance since
the comparison is necessarily an average over cases,
readers and (possibly) rereadings [40, 52]. Two meth-
ods [15, 44] deal with the problem by modeling the
variation in the summary index in question, while
another [54] models the raw rating data responses.
From the investigations thus far [14, 55], both mod-
eling approaches appear to give comparable answers,
but commentators [48, 35] have called for some fur-
ther work to investigate the performance of analysis
strategies that use statistical tests to decide what is
the appropriate error term and denominator degrees
of freedom when reader x modality interactions are
involved.

When studies of imaging procedures involve
multiple centers, complex procedures, ethical con-
cerns, “real-time” readings, and different experts in
the different imaging modalities [18], the data can
quickly become imbalanced and/or incomplete. Anal-
ysis problems are thus aggravated by the subjective
(and thus possibly nonpoolable) nature of the ratings,
the often large numbers of case–reader sets, each
containing too few observations to allow paramet-
ric fitting of separate ROC curves, and the fact that,
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unlike the usual response measures in clinical trials,
the elemental ROC data are not absolute numbers that
can be easily averaged or displayed individually in a
descriptive way. If all available data are to be used,
the only logical approach is to use regression meth-
ods. Since the first regression work in this area [57],
there has been considerable activity in developing
parsimonious approaches to the problem, includ-
ing random effects models [2], Gibbs sampling (see
Markov Chain Monte Carlo) [17], and generalized
estimating equations [56, 61].

In some situations, the study material may involve
more than one region of interest on an image. Sample
reuse methods can help to calculate the precision with
which statistical contrasts are made [1, 10, 24, 45]
(see Bootstrap Method).

Software

Programs for parametric estimation are available
from the WWW location www-radiology.uchi
cago.edu/cgi-bin/software.cgi maintained
by the developer, Charles Metz. Special-purpose pro-
grams for nonparametric inference are more numer-
ous, but most of the tasks can be accomplished using
a spreadsheet [27]. Software for the multireader, mul-
ticase approach to imaging data is available from the
authors of ref. [15]; software for the other approaches
is still evolving and interested users should contact
the various authors cited above.

Future Developments

Whereas methods for comparing ROC curves asso-
ciated with tests that yield objective test results
have now become routine, solutions to the com-
plex analytic problems involved in the comprehensive
comparison of accuracy of imaging procedures have
not been completely achieved. The methods pro-
posed in the last 5 years need further testing; the
links between them need to be better understood;
and user-friendly software to implement these newest
approaches remains to be developed.
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Record Linkage

At the core of all descriptive epidemiology studies
lies a data set, with many variables, which has been
gathered to answer a specific hypothesis. Often it
is only as the project develops that the researcher
realizes the potential of exploring alternate study
endpoints by adding in other data about the same
respondents. The tried and tested technique is for
a clerk to look at the individual records, sorted in
some logical order, and put the records together,
applying intuitive decision rules based on human
judgment. As record systems have been computerized
over the past 20 years, one of the greatest impacts
of increased processing power has been to facilitate
linkages between related data sets, even when they
do not share a unique identifier.

Three main techniques are used for record linkage,
Newcombe [13] and Jamieson et al. [9] describe in
detail the technical issues relating to exact matching
and probability linkage (see Matching, Probabilis-
tic). They can be summarized as follows:

1. Unique. Records are linked together where
unique identifiers such as insurance number or
health service number match exactly. The files of
records are computer sorted into the same order,
and matched together within blocks. It is a fairly
simple process, but may only identify 80%–85%
of true matches due to errors in recording of
identifiers.

2. Fuzzy. For data sets which do not have unique
identifiers, key identifiers such as surname, date
of birth, sex, date of interview/treatment, and
postal district are used for linkage. To cope with
coding errors, fuzzy matching identifies records
which are “almost” the same, such as surname
spelling incorrect, or year and month of birth cor-
rect, but day wrong. Computer programs either
present a choice of matches for the user to choose
the best match, or have incorporated a simple
scoring system and determine the best match
from the score. Computer algorithms are well
developed for matching on individual variables,
and this technique provides 85%–90% of true
matches. It requires human intervention and there
may be operator bias.

3. Probability. This is the most sophisticated form
of linkage, in which decision rules on records

matching are programmed based on the proba-
bility of two records being from different people
having the same identifier. These probabilities
are aggregated to a score and checked against a
threshold to determine whether a match is made.
The computer system needs to be tailored for the
data sets to be matched and is processor inten-
sive, but provides linkages of 95%–99% true
matches with false positive rates of 1%–2%.

The following are examples of the uses made of
record linkage within healthcare systems and demon-
strate the value of this powerful technique. Many of
the examples come from uses made of the Scottish
Medical Record Linkage Database [7], which con-
tains morbidity records from Scottish hospitals, and
mortality records from the General Register Office
(Scotland) from 1968 onwards – almost 4 million
people with 12 million episodes.

Medical record linkage poses problems of data
confidentiality and privacy, because the linked data
are comprehensive and the techniques use personal
identifying data. Most analytic studies do not require
access to patient identifiable data once the linkages
have been made. For administrative data sets, strict
controls need to be in place to ensure that the data
are not released to individuals and used for purposes
other than those registered in government legisla-
tion.

The issue of infringing civil liberties, by invasion
of privacy through wrongful use of information, is
currently taxing most governments. Researchers need
to be aware of legislation and appropriate use of data.
For example, in Scotland, access to identifiable data
is controlled by medically qualified data holders, and
a Privacy Advisory Committee [10] has been estab-
lished, with membership drawn from senior medical
officers, legal professions, and the public, to ensure
that ethical approval is in place for record linkage
studies.

Evidence-Based Medicine

The perception remains that descriptive epidemiol-
ogy has little to contribute to the development of
evidence-based medicine with its focus on random-
ized clinical trials (see McPherson [12]). Probability-
based record linkage techniques can make a major
contribution in assessing the efficacy of treatment
regimes at the macro level. For example, using exact
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matching on health service administration numbers,
Evans et al. [4] at the Tayside Medicines Monitoring
Unit are able to use case–control methodology to
review the association of topical nonsteroidal anti-
inflammatory drugs with hospital admission for upper
gastrointestinal bleeding and perforation. The Scot-
tish Health Service are now automating the linkage
between prescribing data, patient hospitalization, and
death profiles. This will establish a facility for post-
marketing surveillance, in which possible adverse
drug reactions can be quickly analyzed and assessed
before the public are alarmed by the media (see Phar-
macoepidemiology, Overview).

Another area in which linkage is being used effec-
tively is the follow-up of very low birthweight chil-
dren and the impact of their improved survival on
health care costs. In California [2], probability-linked
data from the California Birth Cohort and Medicaid
claims in years after birth have been used to evaluate
competing hypotheses for racial and ethnic differ-
ences (see Ethnic Groups) in mortality and health
care costs, and to assess the need for hospital ser-
vices from the improved neonatal survival of these
children.

Outcome Measurement

Evaluating the effects of medical care is not a new
idea, but it has received increased emphasis over
the past decade because of concerns for the qual-
ity and cost of medical care (see Quality of Care).
While most attention has been placed on determining
the effectiveness of new treatment regimes through
randomized control trials, the inclusion criterion for
patients can be so selective (see Eligibility and
Exclusion Criteria) that the true efficacy of the
treatment can only be assessed when it comes into
general usage. Application of record linkage tech-
niques using administrative databases for follow-up
of cohorts of patients with specific disease patterns,
or procedures, permits analysis of outcomes mea-
sures which would otherwise be prohibitively expen-
sive.

The Clinical Resource and Audit Group of the
Scottish Office Department of Health have pioneered
the publication of routine clinical outcome measures
in the UK since 1993. The three reports [17] to date
have been produced following detailed consultation
with health service professionals, to gain consensus

on the measures and to assess the feasibility of
using them to monitor the effectiveness and appro-
priateness of health purchasing strategies. Without a
unique patient identifier, probability linkage is the
key to determining readmission rates, including to
other institutions, and postoperation survival after dis-
charge.

While the measures tend to be presented as inter-
val estimates (see Estimation, Interval), standard-
ized for confounding factors, such as age, sex,
deprivation, and co-morbidities, administrative data
do not yet contain robust measures of severity of
disease. As with all descriptive epidemiology tech-
niques, the outcome measures highlight topics for
more detailed investigation via randomized controlled
trials or clinical audit.

Survival Rates

As the search continues for new, meaningful outcome
measures, one of the main uses of record linkage has
been analysis of survival patterns for disease, espe-
cially for cancer (see Survival Analysis, Overview).
Most civil registration authorities provide an exact
matching service for bona fide researchers. How-
ever, increased computing power has meant that this
process can now be automated to include probabil-
ity or “fuzzy” matching techniques, which increase
the reliability of the links. Within the Scottish Can-
cer Registry, we found that exact matching with
manual techniques under-ascertained almost 5% of
deaths [16], because the procedures were built on
zero tolerance of false positive rates. This resulted
in one study for the nuclear industry showing a
“healthy worker” effect (see Occupational Epidemi-
ology), until another three deaths were determined by
automated probability linkage among the cohort of
employees.

The availability of population-based data in spe-
cific diseases registers, such as cancer, diabetes,
and renal failure, with linkage to death registrations
enables the development of survival tables [16] (see
Life Table), which are of use not only to the profes-
sional dealing with individual patients but also to the
patients and their carers. Society is becoming more
attuned to the concepts of risk, and one of the most
common questions asked when life-threatening dis-
ease is diagnosed is “What is my chance of surviving
1 year, 5 years, or 10 years?”. Insurance compa-
nies are very interested in improved estimates of




