
STATISTICAL NOTE

The Breslow Estimator of the Nonparametric Baseline
Survivor Function in Cox’s Regression Model

Some Heuristics

James A. Hanley

Abstract: Most survival analysis textbooks explain how the hazard
ratio parameters in Cox’s life table regression model are estimated.
Fewer explain how the components of the nonparametric baseline
survivor function are derived. Those that do often relegate the
explanation to an “advanced” section and merely present the com-
ponents as algebraic or iterative solutions to estimating equations.
None comment on the structure of these estimators. This note brings
out a heuristic representation that may help to de-mystify the
structure.

(Epidemiology 2008;19: 101–102)

Most survival analysis textbooks aimed at nonstatisti-
cians describe how the hazard ratio parameters in

Cox’s life table regression model1 are estimated, but few
explain how the components of the nonparametric baseline
survivor function are derived. Those that do (such as the
book by Collett2) tend to relegate the description to an
“advanced” section, where the components are merely
presented as algebraic or iterative or approximate solutions
to estimating equations. None comment on the structure of
these estimators.

In what follows, I give a heuristic explanation of how
these estimators work. By publicizing this explanation, I hope
that it will eventually make its way into textbooks. I also
advance a possible explanation for an “even more surprising”
observation made by Breslow in his contribution3 to the
discussion of Cox’s 1972 paper.

The structure is most readily seen with the Product-Limit
step-function version of Ŝ0�t�. Denote the fitted vector of regres-
sion coefficients by �̂. Consider risk set i, with di failures at time

ti. Suppose the ni risk set members have covariate vectors zi,1,
zi,2, . . . , zi,ni, such that �j exp ��̂zij� � n�i, say. The choice of n�i

to denote the sum of hazard ratios will become obvious below.
In his contribution to the discussion of Cox’s paper,

Breslow3 suggested estimating S0�t� using “an exact analogue
of the Kaplan-Meier estimate,” namely the product

Ŝ0(t) � �
i:ti 	t

(1 
 �̂i)

where, in the notation used here,

�̂i �
di

n�i

He explained that the “expression for the �̂i can also be
obtained as a first-order approximation to the estimate sug-
gested by Cox, and as an approximation to the estimate
derived from the distinct discrete time model of Kalbfleisch
and Prentice.4” Since then, the textbooks and software doc-
umentation that have covered estimators of S0�t� have simply
repeated this formula, or the more complex one by Kalb-
fleisch and Prentice4 that leads to a closed form expression
only when di �1. None has remarked on the structure of
Breslow’s approximation.

The structure is more easily seen if one considers a
dataset where there is just one, binary, covariate z, with z �
1 if the subject is male and 0 if female. One could estimate
S0�t�, the survival function for females, by restricting the
classic Kaplan-Meier estimator to the survival times for the
females in the sample. But why not use the proportional
hazards model to synthetically augment the sample? Why not
“transmute the males into females”5 and estimate S0�t�, by the
Kaplan-Meier or Nelson-Aalen method, from a single dataset
consisting of both the females and the “female-equivalents”
of the males?

Operationally, this translates into the following epide-
miologic counting: if exp ��̂ � 1� � 1.5, say, then a risk set
i that consists of say 50 females, each with a (relative) hazard
of exp ��̂ � 0� � 1, and 60 males (so, ni � 110 in all) is
equivalent to a risk set that consists of
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n�i � 50 � 1 � 60 � 1.5 � 140 “females”

Thus the estimate of �i is di/140, just as if it were performed
in a standard Kaplan-Meier calculation in a “females only”
risk set with an “effective size” of 140. The di/140 is also
used in the sum that forms the Nelson-Aalen estimator of the
integrated hazard function, ie,

�̂0(t) � �
i:ti 	t

(di/n�i)

and thus in the estimated survival function obtained by
exponentiating the negative of this sum.

The structure of n�i shows that this is exactly the
principle implied by the Breslow estimator. Regardless of the
value of z, or whether there are any subjects in the dataset
with that specific covariate pattern value, the Ŝz�t� for z,
calculated as a power of the step function Ŝ0�t� , has as many
steps as there are distinct failure times in the overall dataset,
regardless of the exactitude with which �i is estimated.

If the values of some covariates in a dataset are located
far from 0 (eg, ages, blood pressures, cholesterol levels), Ŝ0�t�
will be quite extreme relative to that for any covariate pattern
in the dataset. The user does not usually look at this fitted
curve, but rather at the Ŝ0(t)

exp��̂ z� for each covariate pattern, z.
However, if all covariates are centered, Ŝ0�t� and the classic
Kaplan-Meier curve will be close to each other, but, because
of the nonlinearities involved, they will not be identical.

When he proposed his estimator, Breslow3 also re-
ported on “a covariance analysis of survival data arising from
a clinical trial involving 268 patients on 5 regimens” that he
had carried out. His estimate of S0�t� agreed with the more

complicated estimate of Cox “to within 0.001 at each time
point.” Given the large risk sets, the accuracy of his approx-
imation should not have that surprising. But “even more
surprising” to Breslow was the fact that “neither departed
greatly from the unadjusted Kaplan-Meier estimate, obtained
by setting �̂ � 0 in the expression for �̂i above,” and that
“this was true in spite of the fact that the covariate had a
marked effect on survival.” In view of the above, possible
reasons are that the variables were centered, or that, at the
very least, the (scalar) values of the linear predictor derived
from them were approximately centered.

From what I can discern, the phreg procedure in SAS
(SAS Institute, Cary, NC) and stcox in Stata (Stata Corp,
College Station, TX) use the Kalbfleisch and Prentice estimates
of “�” (the complement of �) by default, while the basehaz
function in the survival package in R (www.r-project.org) uses
the Breslow estimate of �. If the risk sets are at all large, and the
ties relatively few, then the differences between the results of the
various approaches will be minor. Even with these minor dif-
ferences in approach, all of them use synthetic (model-based)
denominators made up of “baseline-equivalent” subjects created
along the lines described above.
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