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Just as diagnostic tests are most helpful in light of the clinical presentation,
statistical tests are most useful in the context of scientific knowledge. Knowing
the specificity and sensitivity of a diagnostic test is necessary, but insufficient: the
clinician must also estimate the prior probability of the disease. In the same way,
knowing the P value and power, or the confidence interval, for the results of a
research study is necessary but insufficient: the reader must estimate the prior
probability that the research hypothesis is true. Just as a positive diagnostic test
does not mean that a patient has the disease, especially if the clinical picture
suggests otherwise, a significant P value does not mean that a research
hypothesis is correct, especially if it is inconsistent with current knowledge.
Powerful studies are like sensitive tests in that they can be especially useful when
the results are negative. Very low P values are like very specific tests; both result
in few false-positive results due to chance. This Bayesian approach can clarify
much of the confusion surrounding the use and interpretation of statistical tests.

(JAMA 1987;257:2459-2463)

IN THE four original contributions
in this issue of The Journal, the au¬
thors report the results of statistical
tests of 76 hypotheses.1"4 Of these, 32
had significant P values (P<.05). But do
these P values imply that the 32 hypoth¬
eses are true? Or that 95% of them are
true? Are all significant P values cre¬
ated equal?
The answer to these questions is

"No!" What then is a P value? It is the
likelihood of observing the study results
under the assumption that the null hy¬
pothesis of no difference is true. Proba¬
bly because this definition is elusive and
intimidating, understanding P values
(and other statistical concepts like
power, confidence intervals, and multi¬
ple hypothesis testing) is often left to
experts in the field. It is easier just to
check whether a P value is .05 or less,
call the result "statistically significant,"
regard the tested hypothesis as proba¬
bly true, and move on to the next para¬
graph.
Readers of medical literature need

not give up quite so quickly, however. As
Diamond and Forrester5 pointed out,
many statistical concepts have remark¬
ably similar analogues in an area famil-

iar to clinicians—the interpretation of
diagnostic tests. In the diagnosis of
Cushing's syndrome, for example, most
clinicians recognize that an elevated se¬
rum cortisol level is more useful than an
elevated blood glucose level, and that an
elevated cortisol level is more likely to
be due to Cushing's syndrome in a
moon-faced patient with a buffalo hump
and abdominal striae than in an over¬
weight patient with hypertension.6,7
Why? Because the interpretation of a
test result depends on the characteris¬
tics of both the test and the patient
being tested.8"13
The same type of reasoning—called

Bayesian analysis after Thomas Bayes,
the mathematician who developed it
more than 200 years ago14—can also be
used to clarify the meaning of the
P value and other statistical terms.
Although this application ofBayes' ideas
has been discussed in epidemiologic and
statistical literature,1518 it has received
less attention in the journals read by
clinicians. In this article, we begin with
the basic aspects of the analogy be¬
tween research studies and diagnostic
tests, such as the similarity between the
power of a study and the sensitivity of a
test, and then examine more challeng¬
ing issues, such as how a study with
multiple hypotheses resembles a serum
chemistry panel.
THE ANALOGY
An overview of the analogy between

research studies and diagnostic tests is
shown in Table 1. In this analogy, a

clinician obtains diagnostic data to test
for the presence of a disease, such as
breast cancer, and an investigator col¬
lects study data to determine the truth
of a research hypothesis, such as that
the efficacies of two drugs differ in the
treatment of peptic ulcer disease. (The
research hypothesis is often called the
alternative hypothesis in standard ter¬
minology.) The absence of a disease (no
breast cancer) is like the null hypoth¬
esis of no difference in the efficacy of the
two drugs.
The term "positive" is used in its usual

sense: to refer to diagnostic tests that
are consistent with the presence of the
disease and to studies that have statis¬
tically significant results. Similarly,
"negative" refers to diagnostic tests
consistent with the absence of disease
and research results that fail to reach
statistical significance. Thus there are
four possible results whenever a patient
undergoes a diagnostic test. Consider
the use of fine-needle aspiration in the
evaluation of a breast mass, for example
(Table 2). If the patient has breast can¬
cer, there are two possibilities: the test
result can either be correctly positive or
incorrectly negative. On the other
hand, if the patient actually does not
have cancer, then the result will either
be correctly negative or incorrectly
positive. Similarly, there are four possi¬
ble results whenever an investigator
studies a research hypothesis (Table 3).
If the efficacies of the two drugs really
do differ, there are two possibilities: the
study can be correctly positive if it finds
a difference or incorrectly negative if it
Table 1.—The Analogy Between Diagnostic Tests
and Research Studies

Diagnostic Test Research Study
Absence of disease Truth of null hypothesis
Presence of disease Truth of research

(alternative)
hypothesis

Positive result Positive result (reject
(outside normal limits) null hypothesis)

Negative result Negative result (fall to
(within normal limits) reject null hypothesis)

Sensitivity Power
False-positive rate P value

(1
-

specificity)
Prior probability Prior probability of
of disease research hypothesis

Predictive value of a positive Predictive value of
(or negative) test result a positive (or negative)

study
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Table 2.—The Four Possible Results of a Diagnostic Test
If Breast Mass Is Actually:

Malignant Benign

And Result of
Fine-Needle Aspirate is:

Positive This is a true-positive
test: result Is correct

Negative This is a false-negative
test: result is incorrect

This is a false-positive
test: result Is incorrect

This is a true-negative
test: result is correct

Table 3.—The Four Possible Results of a Research Study
If Research Hypothesis

is Actually:
True

(Efficacy of Drug A
and Drug B Differ In

Treatment of Ulcer Disease)

False
(Drug A Has Same
Efficacy as Drug B

in Treatment of Ulcer Disease)

And Result
of Study Is:

Positive This is a true-positive
study: result is correct

Negative This is a false-negative
study: result is incorrect

This is a false-positive
study: result is incorrect

This is a true-negative
study: result Is correct

misses the difference. If the two drugs
actually have the same efficacy, then the
study can either be correctly negative if
it finds no difference or incorrectly
positive if it does find one.
The relationships between the four

possible outcomes of a diagnostic test
are usually expressed as the sensitivity
and specificity of the test, which are
determined by assuming that the pres¬
ence or absence of the disease is known.
Sensitivity is the likelihood that a test
result will be positive in a patient with
the disease. Specificity is the likelihood
that a test result will be negative in a
patient without the disease. If the re¬
sult from a fine-needle aspiration, is
positive in 80 of 100 women with breast
cancer, and negative in 95 of 100 women
without cancer, the test would have a
sensitivity of 80% and a specificity of
95%. There is another term that is
useful in the analogy: the false-positive
rate (1

-

specificity), which is the likeli¬
hood that a test result will be (falsely)
positive in someone without the dis¬
ease. In this example, the false-positive
rate is 5%: of 100 women without breast
cancer, five will have falsely positive test
results.
Similarly, the relationships between

the four possible outcomes of a research
study are usually expressed as the
power and P value of the study, which
are determined by assuming that the
truth or falsity of the null hypothesis is
known. Power is the likelihood of a
study being positive if the research
hypothesis is true (and the null hypoth¬
esis is false); it is analogous to the
sensitivity of a diagnostic test. The
P value is the likelihood of a study being
positive when the null hypothesis is
true; it is analogous to the false-positive
rate (1

-

specificity) of a diagnostic test.
A study comparing two drugs in the
treatment of ulcers that has an 80%
chance of being correctly positive if

there really is a difference in their
efficacies would have a power of 0.80. A
study with a 5% chance of being incor¬
rectly positive if there is no difference
between the drugs would have a"P value
of .05. (Conventionally, when the
P value is less than a certain predeter¬
mined "level of statistical significance,"
usually .01 or .05, the results are said to
be "statistically significant.")
Knowing the sensitivity and speci¬

ficity of a test is not sufficient, however,
to interpret its results: that interpreta¬
tion also depends on the characteristics
of the patient being tested. If the pa¬
tient is a 30-year-old woman with sev¬
eral soft breast masses, a positive result
from a fine-needle aspiration (even with
a false-positive rate of only 5%) would
not suffice to make a diagnosis of cancer.
Similarly, if the patient is a 60-year-old
woman with a firm solitary breast mass,
a negative aspirate result (with a sensi¬
tivity of 80%) would not rule out malig¬
nancy.19 Clinicians use these sorts of
patient characteristics to estimate the
prior probability of the disease—the
likelihood that the patient has the dis¬
ease, made prior to knowing the test
results. The prior probability of a dis¬
ease is based on the history and physical
findings, previous experience with
similar patients, and knowledge ofalter¬
native diagnostic explanations. It can be
very high (breast cancer in the 60-year-
old woman with a single firm mass),
very low (breast cancer in the younger
woman), or somewhere in between. Al¬
though they may not realize it, clinicians
express prior probabilities when using
phrases such as "a low index of suspi¬
cion" or "a strong clinical impression."
In the same way, knowing the power

and the P value of a study is not suffi¬
cient to determine the truth of the re¬
search hypothesis. That determination
also depends on the characteristics of
the hypothesis being studied. Suppose

one drug is diphenhydramine hydro-
chloride (Benadryl) and the other is
chlorpheniramine maléate (Chlor-Tri-
meton): a positive study (at P = .05)
would not ensure that one of the drugs is
effective in the treatment of ulcers.
Similarly, if one drug was ranitidine
hydrochloride (Zantac) and the other a
placebo, a negative study (even with
power of 0.80) would not establish the
ineffectiveness of ranitidine. The char¬
acteristics of a research hypothesis
determine its prior probability—an es¬
timate of the likelihood that the hypoth¬
esis is true, made prior to knowing the
study results. The prior probability of a
hypothesis is based on biologic plau¬
sibility, previous experience with
similar hypotheses, and knowledge of
alternative scientific explanations.
Analogous to the situation with diag¬
nostic tests, the prior probability of a
research hypothesis can be very high
(that an H2-blocker, such as ranitidine,
is more effective than placebo in the
treatment of ulcers), very low (that the
efficacies of two Hrblockers, such as

diphenhydramine and chlorphenira¬
mine, differ in the treatment of ulcer
disease), or somewhere in between. Au¬
thors of research reports indicate prior
probabilities with terms like "unantici¬
pated" or "expected" when they discuss
their results.
The advantage of Bayesian analysis in

interpreting diagnostic tests is that it
can determine what the clinician really
wants to know—the likelihood that the
patient has the disease, given a certain
test result. Bayesian analysis combines
the characteristics of the patient (ex¬
pressed as the prior probability of dis¬
ease), the characteristics of the test
(expressed as sensitivity and speci¬
ficity), and the test result (positive or
negative) to determine the predictive
value of a test result. The predictive
value of a positive diagnostic test is the
probability that given a positive result,
the patient actually has the disease.
(The predictive value ofa negative test is
the probability that given a negative
result, the patient does not have the
disease.)
As an example, recall the 60-year-old

woman with a firm breast mass. The
prior probability that the mass is malig¬
nant is moderate, say 50%. A positive
result from a fine-needle aspirate (with
a specificity of 95% and a sensitivity of
80% for cancer) results in a very high
predictive value for malignancy, about
94% (Figure). Next, consider the 30-
year-old woman with multiple soft
masses. The prior probability of cancer
is low, say 1%. Even given a positive
aspirate result, the likelihood that she
has breast cancer is still small (about
14%).



09_ Specificity = 0.999^^^"'^ ^^ /^/

£ / / 0.95 / /
| 05- / / //0.90

.001 .005 0.1 .05 .1 .5 1.0

Very Low Low Moderate High
Prior Probability

Relationship between prior probability and predictive value of positive result of diagnostic test with sensitivity
of 0.80, at several specificities. Figure can also be used to estimate predictive value of positive research study
with power of 0.80 by substituting (1
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P value) for specificity, and prior probability of hypothesis for prior
probability of disease (see "Limitations" section).

A Bayesian approach can also be used
to determine what the reader of a re¬
search study really wants to know—the
likelihood that the research hypothesis
is true, given the study results. It com¬
bines the characteristics of the hypoth¬
esis (expressed as prior probability),
the characteristics of the study (ex¬
pressed as power and the P value), and
the study results (positive or negative)
to determine the predictive value of a
study. The predictive value ofa positive
study is the probability that given a

positive result, the research hypothesis
is actually true. (The predictive value of
a negative study is the probability that
given a negative result, the research
hypothesis is false.)
The predictive value of a research

study, however, is usually harder to
estimate than the predictive value of a
diagnostic test (see "Limitations" sec¬
tion). Nonetheless, the basic analogy
remains valid: the prior probability of
the hypothesis must be combined with
the power and the P value of the study
to determine the likelihood that the
research hypothesis is true. In the next
section, we discuss how this analogy can
be used to understand several statistical
concepts.
IMPLICATIONS
Specificity and the P Value
How low must a P value be for it to be

accepted as evidence of the truth of a

research hypothesis? This question is
analogous to asking: how high must the
specificity of a test be to accept a

positive test result as evidence of a
disease? Requiring that a P value be
less than .05 before it is "significant" is
as arbitrary as requiring that a diag¬
nostic test have a specificity of at least
95%. A more important criterion, but
one that is not as easy to quantitate, is
whether the results of the study com¬
bined with the prior probability of the
research hypothesis are sufficient to
suggest that the hypothesis is true.
Consider the hypothesis, tested in the
Lipid Research Clinics Primary Preven¬
tion Trial,20 that cholestyramine resin
decreases the incidence of coronary
heart disease in hypercholesterolemic
men. This research hypothesis had at
least a low to moderate prior proba¬
bility, based on previous evidence. Even
with a "nonsignificant" P value of .094
(the two-sided equivalent of the contro¬
versial one-sided P = .047 reported by
the investigators), the hypothesis is
likely to be true.
It is also a mistake to believe a re¬

search hypothesis just because a P
value is statistically significant. Con¬
sider a study that found that drink¬
ing two or more cups of coffee a day
was associated with pancreatic cancer
(P<.05).21 This hypothesis had a very
low prior probability: the authors called
the association "unexpected." Thus,

finding a significant P value did not
establish the truth of the hypothesis;
subsequent studies, including one by
the same authors, failed to confirm the
association.2227
Of course, many diagnostic test re¬

sults are not simply reported as "posi¬
tive"; they also indicate how abnormal
the result is. The more abnormal that
result, the less likely that it is just a
chance finding in a normal person. If the
upper limit of normal for a serum thy-
roxine level at a specificity of 95% is 12.0
u-g/dL (154 nmol/L), then a thyroxine
level of 18.0 p.g/L (232 nmol/L) is almost
certainly abnormal. The question be¬
comes whether it represents hyper-
thyroidism, another disease, or a labo¬
ratory error. By analogy, if the cutoff for
calling a study positive is a P value less
than .05, then a P value of .0001 means
chance is an extremely unlikely expla¬
nation for the findings. The question
becomes whether the results indicate
the truth of the research hypothesis or
are a result of confounding or bias (see
"Laboratory Error and Bias" and "Al¬
ternative Diagnoses and Confounding
Explanations" sections). Because the
P value is analogous to the false-positive
rate (1

-

specificity), a study with a very
low P value is like a test with very high
specificity: both give few false-positive
results due to chance, but may require
careful consideration of other possible
explanations.
Sensitivity and Power
When the result of a diagnostic test

that has a high sensitivity is negative,
such as a urinalysis in the diagnosis of
pyelonephritis, it is especially useful for
ruling out a disease. Similarly, when a

powerful research study is negative, it
strongly suggests that the research hy¬
pothesis is false. However, if the sensi¬
tivity of a test is low, such as a sputum
smear in a patient with possible tuber¬
culosis, then a negative result does not
rule out the disease.9 In the same way, a
negative study with inadequate power
cannot disprove a research hypoth¬
esis.28,29

Laboratory Error and Bias
When unexpected or incredible re¬

sults on a diagnostic test are found, such
as a serum potassium level of 9.0 mEq/L
(mmol/L) in an apparently well person,
the first possibility to consider is labora¬
tory error: Was the test adequately
performed? Did the sample hemolyze?
Was the specimen mislabeled? Simi¬
larly, readers of a research study, such
as a trial of biofeedback in the treatment
of hypertension, must always consider
the possibility of bias, especially if the
study yields surprising results: Was the
study adequately designed and ex-



ecuted? Did the investigators assign
subjects randomly? Was blood pressure
measured blindly?30 Improperly per¬
formed tests and biased studies do not
yield reliable information, no matter
how specific or significant their results.
Alternative Diagnoses and
Confounding Explanations
Even if a diagnostic test is adequately

performed, there may be several expla¬
nations for the result. An elevated se¬
rum amylase level, for example, has a
high specificity to distinguish patients
who have pancreatitis from those with
nonspecific abdominal pain. However,
there are extrapancreatic diseases
(such as bowel infarction) that elevate
the amylase level and that must be
considered in the differential diagnosis.
In the same way, although a lowP value
may indicate an association between an
exposure and a disease (like the associa¬
tion between carryingmatches and lung
cancer), a confounder (cigarette smok¬
ing) may actually be responsible. Read¬
ers of research studies should always
keep in mind potential confounding ex¬

planations for significant P values.

Better Tests and Bigger Studies
Increasing the sample size in a re¬

search study is similar to using a better
diagnostic test. Better diagnostic tests
can have more sensitivity or specificity
or both; large studies can have greater
power or lower levels of statistical sig¬
nificance or both. Often the choice of a
diagnostic test is a matter of prac¬
ticality: biopsies are not feasible in ev¬

ery patient for every disease. Similarly,
power or the significance level may be
determined by practical considerations,
since studies of 20000 or more subjects
cannot be done for every research ques¬
tion. Of course, bigger studies may find
smaller differences, just like better
tests may detect less advanced cases of a
disease. A small but statistically signifi¬
cant difference in a research study is
like a subtle but definite abnormality on
a diagnostic test; its importance is a
matter of judgment.
Intentionally Ordered Tests and
Prospective Hypotheses
A positive result on a single inten¬

tionally ordered test is more likely to
indicate disease than the same result
that turns up on a set of routine admis¬
sion laboratory tests. Similarly, the
P value for a research hypothesis stated
in advance of a study is usually more

meaningful than the same P value for a
hypothesis generated by the data. The
reason is that clinicians usually order
tests and investigators state hypoth¬
eses in advance when the prior proba¬
bility is moderate or high. Thus the

predictive values of positive results are
generally greater for intentionally or¬
dered tests and prospectively stated
hypotheses.
Not all unexpected results, however,

have low prior probabilities. Occasion¬
ally, clinicians or investigators are just
not smart or lucky enough to consider
the diagnosis or hypothesis in advance.
For example, a house officer caring for
a patient with fatigue and vague ab¬
dominal symptoms might ignore a se¬
rum calcium level of 10.5 mg/dL
(2.62 mmol/L) until the attending physi¬
cian mentions the possibility of hyper-
parathyroidism in rounds the next
morning. Similarly, researchers might
disregard the association between
smoking and cervical cancer until a
plausible biologic explanation is sug¬
gested.3134 Estimating the prior proba¬
bility of a hypothesis on the basis of
whether it was considered prospec¬
tively is a useful, but not infallible,
method. The truth, elusive though it
sometimes may be, does not depend on
when a hypothesis is first formulated.
Multiple Tests and
Multiple Hypotheses
Most of us are intuitively skeptical

when one of50 substances on a checklist
is associated with a disease at P<.05
because of the likelihood of finding such
an association by chance alone. A stan¬
dard technique for dealing with this
problem of testing multiple hypotheses
is to use a more stringent level of statis¬
tical significance, thus requiring a lower
P value.36,36 This approach is simple and
practical, but it leads to some unsatisfy¬
ing situations. It seems unfair, for ex¬
ample, to reduce the required signifi¬
cance level for a reasonable hypothesis
just because other, perhaps ridiculous,
hypotheses were also tested. What if
the disease was mesothelioma and one
of the exposures was asbestos: should a
more stringent level ofstatistical signifi¬
cance be required because 49 other sub¬
stances were also included? Should the
level of significance be reduced when
testing the main hypothesis of a study
whenever additional hypotheses are
considered? Need statistical adjust¬
ments for multiple hypothesis testing
be made only when reporting all of the
hypotheses in a single publication?
This vexing problem of multiple hy¬

pothesis testing resembles the inter¬
pretation of a serum chemistry panel.
When a clinician evaluates a patient
with a swollen knee, a serum uric acid
level of 10.0 mg/dL (0.6 mmol/L) has the
same meaning no matter how many
other tests were also performed on the
specimen by the autoanalyzer. How¬
ever, an unanticipated abnormal value
on another test in the panel is likely to

be a false-positive: that is because the
diseases itmight represent usually have
low prior probabilities, not because sev¬
eral tests were performed on the same

sample of serum. Similarly, testing mul¬
tiple hypotheses in a single study causes
problems because the prior proba¬
bilities of such hypotheses tend to be
low: when investigators are not sure of
what they are looking for, they test
many possibilities. The solution is to
recognize that it is not the number of
hypotheses tested, but the prior proba¬
bility of each of them, that determines
whether a result is meaningful.37
Confirmatory Tests and Pooled
Studies
When a single diagnostic test is insuf¬

ficient to make a diagnosis, additional
tests are often ordered, some results of
which may be positive and some nega¬
tive. The clinician revises the proba¬
bility of the disease by combining these
results, often weighting them by the
tests' characteristics. In a patient with a
swollen leg, for example, a normal re¬
sult from a Doppler study would lower
the probability of deep venous throm¬
bosis, but an abnormal result of a fi-
brinogen scan might raise it sufficiently
to make the diagnosis. In the same way,
it may be necessary to combine the
results of several research studies,
weighting them by the characteristics
of each study. This process, known as

pooling, allows studies with both signif¬
icant and nonsignificant P values to
change incrementally the likelihood
that a research hypothesis is true. How¬
ever, just as only those tests that are
relevant to the diagnosis in question
should be combined, only those re¬
search studies that address the same
research hypothesis should be pooled.
Confidence Intervals
There is no ready diagnostic test

analogy for confidence intervals from
research studies (the concept of test
precision comes closest). But because
confidence intervals are commonly mis¬
interpreted as expressions of predictive
value, they merit a short discussion.
The term "confidence interval" is unfor¬
tunate, because it leads many people to
believe that they can be confident that
the interval contains the true value be¬
ing estimated. Actually, confidence in¬
tervals are determined entirely by the
study data: the prior probability that
the true value lies within that interval is
not at all considered in the calculations.
A 95% confidence interval is simply the
range of values that would not differ
from the estimate provided by the study
at a statistical significance level of
.05.38,39
Confidence intervals are useful be-



cause they define the upper and lower
limits consistent with a study's data.
But they do not estimate the likelihood
that the results of the research are
correct. A confidence interval provides
no more information about the likeli¬
hood of chance as an explanation for a
finding than does a P value.40 As an
example, suppose a well-designed study
finds that joggers are twice as likely as

nonjoggers to develop coronary heart
disease, with a 95% confidence interval
for the relative risk of 1.01 to 3.96. (This
is equivalent to rejecting the null hy¬
pothesis of no association between jog¬
ging and heart disease at P = .05.)
Despite a 95% confidence interval that
excludes 1.0, there is obviously not a
95% likelihood that joggers are at an
increased risk of coronary heart dis¬
ease. There are many other studies that
have found that exercise is associated
with a reduced risk of heart disease.
Given the low prior probability of the
hypothesis that jogging increases the
risk of coronary heart disease, chance
(or perhaps bias) would be a more likely
explanation for the results.
LIMITATIONS
While it provides several useful in¬

sights, the analogy between diagnostic
tests and clinical research is not perfect.
It is easier to determine the prior prob¬
ability of a disease, based on the preva¬
lence of the disease in similar patients,
than the prior probability of a hypoth¬
esis, based on the prevalence of the
truth of similar hypotheses. Similarity
in patients can be defined by character¬
istics known to be associated with a
disease, such as age, sex, and symp¬
toms.11 But what defines similar hy¬
potheses? Thus the prior probability of
most research hypotheses tends to be a

subjective estimate (although, in prac¬
tice, estimates of the prior probability of
a disease are generally subjective as
well).
Second, as long as there is a gold

standard for its diagnosis, a disease is
either present or absent: there are only
these two possibilities. If a group of
patients known to have the disease is
assembled, a single value for the sensi¬
tivity of a test can be determined em¬
pirically. But there is no single value for
the power of a research study: it de¬
pends on the sample size, as well as the
magnitude of the actual difference be¬
tween the groups being compared. A
study comparing IQ in internists and
surgeons, for example, might have a
power of only 50% to detect a difference
between them if surgeons actually
scored five points higher than inter¬
nists, but a power of 98% if surgeons
actually scored ten points higher. Since
the actual difference is unknown, a

unique value for power cannot be calcu¬
lated.

CONCLUSIONS
Clinicians do not simply decide that a

patient has a disease when a diagnostic
test result is positive or rule out the
disease when the test result is negative.
They also consider the sensitivity and
specificity of the test and the character¬
istics of the patient being tested. In the
same way, readers should not believe or
disbelieve the research hypothesis of a
study on the basis of whether the re¬
sults were statistically significant. They
should also take into account the study's
power and P value and the characteris¬
tics of the hypothesis being tested.
Thus, all significant P values are not

created equal. Just as the accuracy of a
diagnosis depends on how well the clini¬
cian has estimated the prior probability
and considered alternative diagnoses
and laboratory errors, the interpreta¬
tion of a research study depends on how
well the reader has estimated the prior
probability and considered confounders
and biases. Knowing the power and
P value (or the confidence interval) for a
study's results, like knowing the sensi¬
tivity and specificity of a diagnostic test,
is necessary but not sufficient. This
Bayesian approach requires the active
participation of the reader and empha¬
sizes the importance of scientific con¬
text in the interpretation of research.
This project was supported by a grant from the
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