SUMMARY - 1

- The difference sources of variability have important implications in patient management.
- Descriptive statistics should be descriptive, and should suit the pattern of variation.
- Confidence intervals preferable to P-values, since they are expressed in terms of (comparative) parameter of interest; they allow us to judge magnitude and its precision, and help us in 'ruling in / out' certain parameter values.
- A 'statistically significant' difference does not necessarily imply a clinically important difference.
- A 'not-statistically-significant' difference does not necessarily imply that we have ruled out a clinically important difference.

SUMMARY - 2

- Precise estimates distinguish b / w that which - if it were true - would be important and that which - if it were true would not. ' n ' an important determinant of precision.
- A lab value in upper 1% of reference dist ${ }^{r n}$. (of values derived from people without known diseases/conditions) does not mean that there is a 1% chance that person in whom it was measured is healthy; i.e., it doesn't mean than the a 99% chance that the person in whom it was measured does have some disease/condition.
- Likewise, P -value \neq probability that null hypothesis is true.
- The fact that

$$
\operatorname{Prob}[\text { the data } \mid \text { Healthy] is small [or large] }
$$

does not necessarily mean that

$$
\operatorname{Prob}[\text { Healthy | the data] is small [or large] }
$$

SUMMARY - 3

- Ultimately, P-values, Cl's and other evidence from a study need to be combined with other information bearing on parameter or process.
- Don't treat any one study as last word on the topic.
- Worry also about distortions of a non-sampling kind that are not minimized by having a large ' n.' A larger sample size will not reduce systematic differences in a comparison.

