
(For EPIB607) Inference about a Population Mean (µ) – AAO unit 26; Baldi & Moore, Ch 17, Colton Ch 4. JH v. 2018.09.27

(FREQUENTIST) INFERENCE for (PARAMETER) µ – the mean
of an (effectively) infinite-size universe of Y values – based on the n values,
y1, . . . , yn in an SRS from that universe/population

‘Certain conditions apply ’ 1

Point-estimate of µ : µ̂ = ȳ

(Symmetric) Confidence Interval CI for µ : ȳ ±ME,
where the Margin of Error (ME) is a

• z-multiple of SE 2, if n is ‘large’ AND

the Y values in the universe have a ‘Normal’ (Gaussian’) distribution
or, if not, n is large enough so that the Central Limit Theorem guar-
antees that the sampling distribution of possible ȳ’s of size n from this
universe is well enough approximated by a Gaussian distribution

• t-multiple of SE if ‘small’ n AND

the Y values in the universe have a ‘Normal’ (Gaussian’) distribution

Test Statistic in relation to the Null Hypothesis µ = µ0 :

z =
ȳ − µ0

σ/
√
n

or t =
ȳ − µ0

s/
√
n

The ‘z’ and ‘t’ distributions are the respective (conceptual) sampling
distributions one would get if one

• took samples (of size n) from a Normal(µ, σ) distribution

• calculated the quantity z = ȳ−µ
σ/
√
n

or t = ȳ−µ
s/
√
n

from each sample

• compiled a histogram of the results

‘Student’ ’s ‘curve’ for sampling distribution of t = ȳ−µ
s/
√
n

• Is symmetric around 0 ( just like z )

1 B&M stress that the first of their conditions ‘we can regard our data as a simple
random sample (SRS) from the population’ as very important ;

the second, ‘Observations from the population have a Normal distribution with unknown

mean parameter µ and and unknown standard deviation parameter σ’ less so: ‘In practice,

inference procedures can accommodate some deviations from the Normality condition when

the sample is large enough.’
2B&M distinguish the SD of a statistic from its SE. They switch on p. 412: ‘When

the standard deviation of a statistic is estimated from data, the result is called the stan-
dard error (SE) of the statistic. The SE of the sample mean, ȳ is SEM = s/

√
n.’

• Has a shape like that of the Z distribution, but with a SD slightly larger than unity
i.e. slightly flatter and heavier-tailed; SD(t) =

√
(n− 1)/(n− 3). See Fig 17.1 in

B&M.

• Shape becomes indistinguishable from Z distribution as n → ∞ (in fact as n goes
much beyond 30)

• Instead of ±1.96× SE for 95% confidence (or to use as the ‘critical value’ in a null-
hypothesis test), we need these multiples (or critical values):

n ‘degrees of freedom’ Multiple from R

2 1 12.71 qt(0.975, 1)

3 2 4.30 qt(0.975, 2)

4 3 3.18 qt(0.975, 3)

11 10 2.23 qt(0.975, 10)

21 20 2.09 qt(0.975, 20)

31 30 2.04 qt(0.975, 30)

121 120 1.98 qt(0.975,120)

∞ ∞ 1.96 qt(0.975,Inf)

The width of the t distribution is a function of how many ‘independent’
evaluations of σ one has, when using the sample s, to estimate σ.

σ is a measure of how far each Y in the population deviates from µ. But
since we don’t know µ, we have to use the deviations of each of the n sam-
ple y’s from the ‘best bet’ for µ, namely from the sample mean ȳ.

n = 2 is the smallest n for estimating σ: s involves the 2 deviations, y1 − ȳ
and y2 − ȳ. These 2 (equal size, but opposite sign) deviations add to 0, so in
reality we have only one ‘independent’ evaluation of σ.

If n = 3, s involves 3 deviations, y1 − ȳ, y2 − ȳ and y3 − ȳ. The 3 deviations
(of unequal size, with 2 of one sign balancing 1 of the other) add to 0, so we
have only 2 ‘independent’ evaluations of σ : 1 combination of the 3 y’s is
used to estimate µ and the other 2 (i.e., n − 1) combinations measure how
far the y’s deviate from the estimate of the ‘centre.’

We refer to the ‘number of independent evaluations of variation’ [ (n − 1)
here] as the degrees of freedom. B&M (p. 414) say students ‘ofter won-
der’ about its meaning but they only give a minimal explanation, saying
that it ‘defines the shape of a t distribution’ (and thus, a sampling distribu-
tion, and that the ‘all you need to know is that there are many t distribu-
tions, and you must specify, through the degrees of freedom, which t distri-
bution is relevant for your computations.’

When (later) we have to estimate variation from a fitted line, we will lose a
few more ‘degrees of freedom’ since it takes 2 (or more) combinations of the
y’s to fit the line from which the deviations are measured.

(Possibly-NonSymmetric) Confidence Interval CI for µ

• Bootstrap the ȳ !
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Application: How fast is your reaction time? See related material here:

http://www.biostat.mcgill.ca/hanley/bios601/Surveys/index.html#ReactionTimes –

https://www.humanbenchmark.com/dashboard - or - https://faculty.washington.edu/

chudler/java/redgreen.html

reaction.times = c(325,327,357,299,378)/1000

( summary(reaction.times) )

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.2990 0.3250 0.3270 0.3372 0.3570 0.3780

( round( sd(reaction.times), 3) ) [1] 0.031

( n = length(reaction.times) ) [1] 5

## FROM SCRATCH (not quite ‘by hand’, since R does some lifting!)

( SEM = sd(reaction.times)/sqrt(n) ) [1] 0.01372734

( round(SEM,3) ) [1] 0.014

( multiple.for.95pct = qt(0.975,n-1)) [1] 2.776445

( multiple.for.95pct.if.n.of.100 = qt(0.975,100-1)) [1] 1.984217

( round( mean(reaction.times) +

c(-multiple.for.95pct,0,multiple.for.95pct) * SEM,3) )

[1] 0.299 0.337 0.375

## FITTING mu using mother of all REGRESSION MODELs: E[y] = mu * 1

## (‘intercept-only’, ‘1-constant’ , or ‘no x’ linear model (lm), Least Squares fit)

fitted.model = lm( reaction.times ~ 1)

summary( fitted.model )

Residuals:

1 2 3 4 5

-0.0122 -0.0102 0.0198 -0.0382 0.0408

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.33720 0.01373 24.56 1.63e-05 ***

---

Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1

Residual standard error: 0.0307 on 4 degrees of freedom

library(MASS) ; round( confint(fitted.model), 3 )

2.5 % 97.5 %

(Intercept) 0.299 0.375

# Interestingly, regression function ‘lm’ does not give CI’s automatically

# It does give p-values, even if H_0 is silly

1- pt(24.56,n-1) # is the probability ABOVE 24.56 [1] 8.154983e-06

pt(-24.56,n-1) # is the probability BELOW -24.56 [1] 8.154983e-06

2*(1-pt(abs(24.56),n-1)) [1] 1.630997e-05 # is the probability

## of a more extreme result in EITHER direction (but not that relevant

## here, since a negative mu is even more silly than a zero mu)

## THE WAY MANY SOFTWARE COURSES (STILL) TEACH IT

## specialized R function -- but to get CI, to have to ask for the test !!

t.test(reaction.times)

One Sample t-test , data: reaction.times

t = 24.564, df = 4, p-value = 1.63e-05

alternative hypothesis: true mean is not equal to 0

95 percent confidence interval:

0.2990868 0.3753132

sample estimates: mean of x 0.3372

## FROM mosaic package ??

## Bootstrap ??
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Application: Effects of sleep deprivation on reaction time

The orientational material below is from the sleepstudy data reanalyzed
in Ch. 3 of the excellent (online) book ‘lme4: Mixed-effects modeling with
R,’ dated June 25 2010, by Douglas M. Bates. The data are included in the
lme4 package – and were used again in the 2017 Epidemiology (teaching)
article by Weichenthal, Baumgartner and Hanley.

Belenky et al. [2003] report on a study of the effects of sleep deprivation on
reaction time for a number of subjects chosen from a population of long-
distance truck drivers. These subjects were divided into groups that were
allowed only a limited amount of sleep each night. We consider here the
group of 18 subjects who were restricted to three hours of sleep per night
for the first ten days of the trial. Each subject’s reaction time was measured
several times on each day of the trial.
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Average reaction time versus number of days of sleep deprivation by sub-
ject for the sleepstudy data. Each subject?s data are shown in a separate
panel, along with a simple linear regression line fit to the data in that panel.
The panels are ordered, from left to right along rows starting at the bottom
row, by increasing intercept of these per-subject linear regression lines. The
subject number is given in the strip above the panel.

Data Analysis: Each panel yields a fitted slope, the fitted prolongation of
the reaction time per day of reduced sleep. We have these 18 ‘slopes’, which
we denote by b1 to b18, and store in an R vector IndividuallyFittedSlopes

> round(IndividuallyFittedSlopes,1)

[1] 21.8 2.3 6.1 3.0 5.3 9.6 9.1 12.3 -2.9 19.0 13.5 19.5 6.4 13.6 11.3

[16] 18.1 9.2 11.3 ------------ 17 are positive and 1 is negative.

summary(IndividuallyFittedSlopes)

Min. 1st Qu. Median Mean 3rd Qu. Max.

-2.900 6.175 10.450 10.472 13.575 21.800

sd(IndividuallyFittedSlopes) [1] 6.564325

FROM SCRATCH, by R

qt(c(0.025,0.975),17) [1] -2.109816 2.109816

round(mean(IndividuallyFittedSlopes) +

qt(c(0.025,0.975),17) * sd(IndividuallyFittedSlopes)/sqrt(18),1)

[1] 7.2 13.7

FROM SCRATCH, by ‘hand’ : The mean of these 18 slopes is b̄ = 10.5 mil-
liseconds longer per day, and their SD is s = 6.6 ms/day. A 95% CI for the

mean delay per day is thus b̄±t17[= 2.11]×6.6/
√

18 = 10.5±3.3 ms. per day.
(Allowing for the above rounding) this agrees with the t.test and with the
fitted ‘linear model with no x’ from R:

t.test(IndividuallyFittedSlopes)

One Sample t-test

data: IndividuallyFittedSlopes

t = 6.7684, df = 17, p-value = 3.283e-06

alternative hypothesis: true mean is not equal to 0

95 percent confidence interval:

7.2 13.7 [4 decimal places removed by JH]

sample estimates:

mean of x 10.5

> fit = lm(IndividuallyFittedSlopes ~ 1)

> summary(fit)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 10.472 1.547 6.768 3.28e-06 ***

Residual standard error: 6.564 on 17 degrees of freedom

> round( confint(fit), 1 ) 2.5 % 97.5 %

(Intercept) 7.2 13.7

There is strong evidence (see p-value) that the mean slope in the ’popula-
tion’ these 18 subjects are drawn from is non-zero.
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What if just had the reaction times on day 0 and day 0?
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Day 0Day 0 Day 1Day 1 Diff. % Diff.
250 259 9 4
223 205 -17 -8
199 194 -5 -2
322 300 -21 -7
288 285 -3 -1
235 243 8 3
284 290 6 2
265 276 11 4
242 274 32 13
312 314 1 0
236 230 -6 -2
256 243 -13 -5
251 300 50 20
222 298 77 35
272 268 -3 -1
225 235 9 4
270 272 3 1
269 273 4 2

Mean
SD

S.E.M.

257 264 8 3
32 33 24 10
8 8 6 2

Instead of 18 slopes across 10 days, we have 18 simple differences; they are
still slopes, but, measured between just 2 adjacent days, are much ‘noisier.’

As in the B&M e.g., Table 17.1, p. 425, we have 18 ‘within-subject’ differ-
ences, so (just as with the 18 slopes over 10 days) it is a single sample of
18 differences, and so one proceeds just as with the example on the previ-
ous page. The following analyses of the only relevant data do not provide
evidence against H0 and the 95% CI for the mean difference includes zero.

IndividualDiffs.Day1.minus.Day0 = c(

9,-17,-5,-21,-3,8,6,11,32,1,-6,-13,50,77,-3,9,3,4)

> t.test(IndividualDiffs.Day1.minus.Day0)

One Sample t-test data: IndividualDiffs.Day1.minus.Day0

t = 1.3997, df = 17, p-value = 0.1796

alternative hypothesis: true mean is not equal to 0

95 percent confidence interval: -4.0 19.8

sample estimates: mean of x 7.9

Whereas the mean of 18 differences between 2 conditions is arithmetically
equal to the difference of the 2 means of 18, the SE of the mean difference is
not the same as the SE of the difference of two independent means.3

3In general, Var(ȳ1 − ȳ0) = Var(ȳ1) + Var(ȳ0) − 2 × Covar(ȳ1, ȳ0). Yet. many

Unsure about ‘Normality’ requirement for ‘t’ procedures?

library(mosaic)

bootstrap <- do(1000) * mean(

resample(IndividualDiffs.Day1.minus.Day0) )

summary(bootstrap$mean)

Min. 1st Qu. Median Mean 3rd Qu. Max.

-5.7 4.0 7.6 7.7 11.1 25.4

confint(bootstrap) [extra -- silly-- decimal places removed]

name lower upper level method estimate

1 mean -2.6 19.2 0.95 percentile 7.9

[COMMENT: CI not very different from model-based one]

HISTORICAL NOTE: These data have the same structure as those in the first il-

lustrative example4 by ‘Student’ in his 1908 paper – where he derived the fore-runner

of todays t distribution: For more, see http://www.epi.mcgill.ca/hanley/Student/

The responses of interest were: D: Difference in hours of sleep when using Drug rather

than Placebo, so the Parameter of Interest is: µD. He used data (from an article by US

doctors5) on n = 10 patients. The two inferential items are a CI for µD, and (the one

‘Student’ addressed) the p-value in relation to the H0 : µD = 0. He was not clear about

whether Halt was µD 6= 0 or µD > 0. Nor would he have been expected to be – the

hypothesis-testing ‘lingo’ had not yet been formalized. Student merely calculate a variant

on the p-value – which he reported as an odds. See details on page 2 of these 607 Notes

from 2001: http://www.epi.mcgill.ca/hanley/c607/ch07/mm_ch_07.pdf

What if, in the sleep deprivation study, one used the (more natu-
ral ?) percent rather than absolute difference in reaction times?

And what if one were worried that the ‘formal’ and ‘official’ ‘Normality’ conditions for
the validity of a t-test (emphasized by Baldi and Moore, only to be considerably relaxed
in the end of the Chapter) were not satisfied? After all, it is difficult to imagine that in
this population of truck-drivers, or more broadly, the distribution of absolute differences
and the distribution of percent differences could both be Normal (Gaussian).

IndividualPctDiffFromDay0 = c(4,-8,-2,-7,-1,3,2,4,13,0,-2,-5,20,35,-1,4,1,2)

bootstrap <- do(1000) * mean( resample(IndividualPctDiffFromDay0) )

summary(bootstrap$mean)

Min. 1st Qu. Median Mean 3rd Qu. Max.

-2.611 1.696 3.134 3.370 4.779 12.236

confint(bootstrap) [extra -- silly-- decimal places removed, and %’s added]

name lower upper level method estimate

1 mean -0.7% 8.5% 0.95 percentile 3.4%

[COMMENT: CI still crosses zero, just as do the CIs based on absolute differences]

authors report the SE of (or a CI for) each of the 2 means, but they are of no use: we
aren’t interested in the means per se, but in the mean difference. Using Var(ȳ1 − ȳ0) =
Var(ȳ1)+Var(ȳ0)assumes one set of 18 subjects for the Day0, and a different set of 18 for
the Day1 condition, a noisy contrast. See more on this in B&M, bottom of p. 424.

4The 2nd involved yields from barley grown from ‘regular’ and ‘kiln-dried’ seeds.
5See http://www.epi.mcgill.ca/hanley/bios601/Mean-Quantile/First.t.test.pdf
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Power and sample size calculations e.g., : Is this milk watered down?

(Adapted from Q 15.17 from Moore and McCabe, 4th Edition)

A cheese maker buys milk from several suppliers. It suspects that some sup-
pliers are adding water to their milk to increase their profits.

Excess water can be detected by measuring the freezing point of the ‘liquid‘.
The freezing temperature of natural milk varies according to a Gaussian
distribution, with mean µ = −0.540◦ Celsius (C) and standard deviation
σ = 0.008◦C. Added water raises the freezing temperature toward 0◦C, the
freezing point of water. The laboratory manager measures the freezing tem-
perature of five consecutive lots of ‘milk’ from one supplier. The mean of
these 5 measurements is -0.533◦C. Is this good evidence that the producer is
adding water to the milk?

Moore and McCabe asked students to ‘State hypotheses, carry out the test,
give the P -value, and state your conclusion.’

In this course, we will go further and ask (Q1) how much water a
farmer/supplier could add to the milk before (s)he has a 10% , 50%, 80%
chance of getting caught (of the buyer ‘detecting’ the cheating). Assume
the buyer continues to use an n of 5, and the same σ = 0.008◦C, and
bases the boundary for rejecting/accepting the product on a 5% ‘α’, and
a 1-sided test, i.e, z = 1.645.6, i.e., the buyer sets the cutoff7 at −0.540 +
(qnorm(0.95) = 1.645)× 0.008/

√
5 = −0.534◦C.

Assume that mixtures of M% milk and W% water would freeze at a mean
of µ = (M/100)×−0.545◦C + (W/100)× 0◦C and that the σ would remain
unchanged. Thus, mixtures of 99% milk and 1% water would freeze at a
mean of µ = (99/100)×−0.540◦C+(1/100)×0◦C = −0.5346◦C. Mixtures of
98:2 would freeze at µ = −0.5292◦C. [Hint: drawing overlapping distributions will

help.]

6Given the extensive experience with the variability of freezing point measurements,
and the practice of using a ‘known’ σ in quality control, the use of a z multiple of 1.645
(rather than a t4 multiple of 2.13) to establish the ‘critical value’ makes sense. It does
not make sense to use an s based on a sample of 5 to re-estimate σ.

7 http://ansci.illinois.edu/static/ansc438/Milkcompsynth/milkcomp_freezing.html states
that ‘The current official freezing point limit (-0.525 degrees Horvet or -0.505 degrees C; see
Sherbon 1988 for discussion of Horvet vs Centigrade) was designed for whole-herd, bulk-tank
samples or processed milk samples, and not for samples from individual cows or individual
quarters. The value of -0.525 degrees Horvet is considered the upper limit which statistically is
suppose to be a cut-off for most, but not absolutely all, samples to be considered ”water-free”
(that is, no added water). https://van.physics.illinois.edu/qa/listing.php?id=1606 states
that ‘the exact freezing point of milk (also called the melting point) varies slightly according
to the individual cow, the breed, the time of day / season that the milk is collected, the type
of feed that the cow receives, etc. According to ... , the majority of cows produce milk with a
natural freezing point of -0.5250 to -0.5650 C, with an average of about -0.5400 C.’

Once we have answered this further-reaching question , we will focus
on a fixed ‘delta’, corresponding to a 99:1 mix of mild and water, and ask
(Q2) what the chances are of detecting cheating if the buyer uses samples
n=10, 15 or 20 rather than just 5 measurements.

Finally , again focusing on a fixed ‘delta’, corresponding to a 99:1 mix of
mild:water, we ask (Q3): at what ‘n’ does the chance of detecting cheat-
ing reach 80%, a commonly used (but arbitrary) criterion used in sample-
size planning by investigators seeking funding for their proposed research?

Q1: The calculations shown at the left below are used to set the cutoff; it is
based on the null distribution shown at the bottom. Clearly the bigger the
signal (the ‘∆’) the more chance the test will ‘raise the red flag.’ It is 92%
when it is a 98:2, and virtually 100% when it is a 97:3 mix.

-0.55 -0.54 -0.53 -0.52 -0.51

Freezing point (degrees C)

Probability (%)
of exceeding cutoff

µMilk = -0.5400; σ = 0.0080;

n=5; SEM = σ n  = 0.0036

alpha=0.05, 1 sided alternative

qnorm(0.95) : 1.645

1.645 * SEM = 0.0059

cutoff = µMilk + 1.645*SEM.

cutoff = -0.5400 + 0.0059 = -0.5341
5
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The probabilities in red were calculated using the formula:
pnorm(cutoff, mean = mu.mixture, sd = SEM, lower.tail=FALSE)
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Q2: Suppose even a 1% added water is serious, and worth detecting.
Clearly, from the previous Figure, and again at the bottom row of the Fig-
ure here, one has only a 45% chance of detecting it: there is a large over-
lap between the sampling distributions under the null (100% Milk) and the
mixture (99% milk, 1% water) scenarios.

So, to better discriminate, one needs to make a bigger resting effort, and
measure more lots, i.e., increase the n.

-0.555 -0.550 -0.545 -0.540 -0.535 -0.530 -0.525

Freezing point (degrees C)

cutoff = -0.54 + 1.645*SEM (alpha=0.05, 1 sided alternative)

σ = 0.0080;  SEM = σ n

n = 5 SEM =  0.0036
45

n = 10 SEM =  0.0025
69

n = 13.6 SEM =  0.0022
80

qnorm(0.8,
lower.tail=FALSE)
            -0.84

0.84 * SEMqnorm(0.05,
lower.tail=FALSE)
1.96 1.645 * SEM

n = (1.645 + 0.84)2 x (σ Δ)2

Δ = 1.645*SEM + 0.84*SEM

n = 15 SEM =  0.0021
83

n = 20 SEM =  0.0018
92

100% milk 1 % water
Δ = 0.0054

The larger n narrows and concentrates the sampling distribution. The
width is governed by the SD of the sampling distribution of the mean of
n measurements, i.e., by the Standard Error of the Mean, or SEM = σ/

√
n.

Because the null sampling distribution narrows, the cutoff is brought closer
to the null. And under the alternative (non-null) scenario, a greater portion
of its sampling distribution is to the right of (i.e., exceeds) the cutoff.

Indeed, under the alternative (i.e., cheating) screnario n = 10 the proba-
bility of exceeding the threshold is almost 70% when n = 10, 82% when
n = 15 and 92% when n=20. You can check these for yourself in R using
this expression:

pnorm(cutoff, mean = mu.mixture, sd = sigma/sqrt(n), lower.tail=FALSE)

Q3: If8 it makes sense to aim for a particular probability, then it
is easy to see, from the middle panel, how to come up with a closed form
formula that (a) allows you to compute the sample size ‘by hand’ and (b)
shows you, more explicitly than the diagram or R code can, what drives the
n.

The ‘balancing formula’, in SEM terms, is simply the n where

1.645× SEM + 0.84× SEM = ∆.

Replacing each of the SEMs (assumed equal, because we assumed the vari-
ability is approx. the same under both scenarios) by σ/

√
n, i.e.,

1.645× σ/
√
n+ 0.84× σ/

√
n = ∆.

and solving for n, one gets

n = (1.645 + 0.84)2 ×
{
σ

∆

}2

= (1.645 + 0.84)2 ×
{
Noise

Signal

}2

.

Notice the ‘anatomy’ or ‘structure of the formula. The first component has
to do with the operating characteristics or performance of the test, i.e., the
‘type I error‘ probability ‘α’ 9 and the desired power10 (the complement of
the ‘type II error’ probability, β.

The second has to do with the context in which it is applied, i..e, the
size of the ‘noise’ relative to the ‘signal.’ In our example, where the
‘Noise-to-Signal Ratio’ is σ=0.0080

∆=0.0054 = 1.48, so that its square is 1.482 or ap-

prox 2.2, and (1.645 + 0.84)2 = 2.4852 = approx 6.2,

n = 6.2× 2.2 = 13.6, approx, or, rounded up, n = 14.

8What is magic or sacred about 80%?
9Had one set the the ‘type I error’ probability at ‘α’ = 0.01, the (one-sided) z value

used in the cutoff would increase to qnorm(0.99,lower.tail=TRUE) = 2.326, instead of
1.645.. If it would make sense to use a two sided alternative, and an ‘α’ of 0.05, the Z
would have been the familiar qnorm(0.975,lower.tail=TRUE) = 1.96 and -1.96 below.

10The z = 0.84 is for 80% power; for 50% power, use qnorm(0.50,lower.tail=TRUE) =
0; for 90% power, use z = qnorm(0.90,lower.tail=TRUE) = 1.28;
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An important point about interpreting p-values from statistical
tests – and the careful ‘legal’ wording of the probabilities shown in red.

In Moore and McCabe’s example, an n = 5 gives an SE of σ/
√

5 =
0.0080/2236 = 0.0036 approx. So the cutoff for a 1 sided test with ‘α’ =
0.05 is 1.645× 0.0036 or 0.0059 approx. above -0.5400, i.e,. at - 0.5341. This
is computed under the null (innocence) hypothesis, namely that what we
are testing is pure milk, with no added water. The 1 sided alternative is
that we are testing a ‘less than 100%, more than 0%’ mix, where the mean
is above (to right of) -0.540, i.e., on the (upper) ’added water’ side of the
null. Formally, these two hypotheses are

H0 : µ = −0.540; Halt : µ > −0.540.

Since the mean of the 5 measurements, namely -0.533◦C, is to the right of
(exceeds) this threshold, it would be considered ‘statistically significant at
the 0.05 level.’ The actual p-value is pnorm(-0.533, mean=-0.54, sd =

0.0036, lower.tail=FALSE) = 0.026.

M&M had asked ask you to consider whether ‘Is this good evidence that
the producer is adding water to the milk? : ‘State the hypotheses,
carry out the test, give the P -value, and state your conclusion.’

And it is here that you need to be nuanced; do not ‘jump to conclu-
sions’ and immediately accuse the supplier of cheating.

In particular, it would not be appropriate – or accurate – to say that you
are 1 - 0.026 = 0.974 = 97.4% certain that the supplier is cheating. Re-
member that a p-value is a probability concerning the data, conditional
on (i.e., computed under the assumption that) H0 being (is) true. In other
words, the p-value has to do with P(data | ‘innocence’), whereas at issue is
the reverse, P(‘innocence’ | data).11

As to this latter probability (of being innocent), there are a lot of other fac-
tors to consider first, before accusing the supplier of cheating.

First, did you (re-)check the calculations? How recently was the instrument
calibrated? etc. 12

Second, why did you chose to test this supplier? Is it someone that the
manager suspected based on previous data, or based on knowing that he

11And, by the way, it won’t help to switch the conversation to a ‘Confidence Interval’
in the hope of simplifying the matter, and avoiding getting tangled up in statistical jar-
gon, trying to explain all these concepts to the farmer.

12 JH calls these ‘Type III errors’: the data were wrong, or the instrument was wrong,
or the technician mis-calculated something. It should remind us that, in the real world,
there are many alternative hypotheses, not just the one.

is behind in his loan payments to the bank? Or maybe the laboratory man-
ager merely asked a technician to start randomly testing, and the first sup-
plier (blindly) chosen was the manager’s brother-in-law?

So, you can see that, just as in medical tests, there are many other
pieces of evidence or information, or circumstances, besides the p-
value, that bear on the probability of innocence or guilt.13 This is
very nicely brought out in the article ‘Are all p-values created equal?’
which you can here: http://www.biostat.mcgill.ca/hanley/BionanoWorkshop/

AreAllSigPValuesCreatedEqual.pdf

Sadly, the mixing up of P(data | hypothesis) and P(data | data) – often re-
ferred to as ‘The Prosecutor’s Fallacy’ – is common, and can lead to serious
harm. See the second-last page in this link http://www.epi.mcgill.ca/hanley/

IntMedResidents/P-Values.pdf

The use of p-values works well in Quality Control, where the aim is to de-
tect (the few) deviations (’bad’ ones) from the desired specifications, to stop
and fix the offending machine, or to flag defective batches. It is not clear
that it is equally effective at identifying the (few) truly active (‘good) com-
pounds via the mass testing of lots of compounds, most of which are ex-
pected to be inactive – and then investing all one’s effort in these few ‘good’
ones at the next stage of development.

[Legalese – small print: ] Possible appropriate wordings to accompany a p=0.026 :

When (if) we test samples of pure milk, only 2.6% of test results
are/would be this high or higher.

IF the only factor operating here were sampling variation, only 2.6%
of test results on pure milk would be this high or higher.

Many shorten the latter to ‘It would be rare to get this high or a higher test value by
chance (or by chance alone), (dangerously) using ’by’ instead of ’if.’ Adding the ‘alone’
does help direct attention to what else might be responsible for the extreme value.

Others go further astray: ‘The probability that this result was due to chance (or chance

alone) is only 2.6%.’ This latter, quite misleading, statement should be avoided and ‘not

used in better families.’ Best get in the habit of inclusing the word ’if ’ in the statement,

i.e., making it clear the statement is conditional. And avoid sliding over into the mistake

– as the second statement does – of addressing the probability that the null (or any alter-

native) hypothesis is true / operating. That probability (about a hypothesis) is outside

the scope of frequentist statistics, and should be left to experts in the substantive field. A

non-expert would not pronounce on the probability that a patient has a certain condition,

based only on the asterisks (the p-value) printed beside a single lab-chemistry value.

13Repeating the test is a common practice when the test result does not agree/fit with
the other evidence.
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